Now showing 1 - 2 of 2
No Thumbnail Available
Publication

Effect of flaxseed oil cake extract on the microbial quality, texture and shelf life of gluten-free bread

2023, Łopusiewicz, Łukasz, Kowalczewski, Przemysław, Baranowska, Hanna Maria, Masewicz, Łukasz, Amarowicz, Ryszard, Krupa-Kozak, Urszula

Extending the shelf life of gluten-free bread (GFB) is a challenge. Mainly due to the ingredients used and their characteristics, GFB has numerous drawbacks such as unsatisfactory texture and rapid staling beyond a low nutritional value. In the present study, flaxseed oil cake extract (FOCE) was used to replace water (25–100%) in GFB formulations in order to test FOCE’s potential to reduce GFB staling and extend microbial stability. Texture (TPA test), water activity (LF NMR), acidity (pH measurements) and microbiological quality of GFBs were tested. Moreover, the content of a lignan with broad health-promoting potential, secoisolariciresinol diglucoside (SDG), in GFB with FOCE was analyzed. The results showed that the use of FOCE enriched experimental GFB in valuable SDG (217–525 µg/100 g DM) while not causing adverse microbiological changes. A moderate level (25–50%) of FOCE did not change the main texture parameters of GFB stored for 72 h, the quality of which was comparable to control bread without FOCE. Meanwhile, higher proportions of FOCE (75–100% of water replacement) shortened GFB shelf life as determined by water activity and texture profile, suggesting that GFB with FOCE should be consumed fresh. To summarize, FOCE at moderate levels can add value to GFBs without causing a drop in quality, while still fitting in with the idea of zero waste and the circular economy.

No Thumbnail Available
Publication

Insight into the Gluten-Free Dough and Bread Properties Obtained from Extruded Rice Flour: Physicochemical, Mechanical, and Molecular Studies

2023, Różańska, Maria Barbara, Kokolus, Patrycja, Królak, Jakub, Jankowska, Patrycja, Osoś, Agata, Romanowska, Magda, Szala, Łukasz, Kowalczewski, Przemysław, Lewandowicz, Jacek, Masewicz, Łukasz, Baranowska, Hanna Maria, Mildner-Szkudlarz, Sylwia

The present study aimed to evaluate the effect of the extrusion process and particle size on the properties of rice flour (microstructure, pasting properties), gluten-free dough (rheological properties), and bread (texture, specific volume, water absorption capacity, low-field nuclear magnetic resonance (LF NMR) relaxometry). Rice flours were extruded at 80 and 120 °C with feed moisture (15 and 30%) and with the same particle size (<132 and >132–200 µm). Significant differences were observed between the pasting profiles of the flours before and after extrusion. The pasting profile of extruded flours confirmed that hydrothermal treatment partially gelatinized the starch, decreasing the viscosity during heating. The water binding properties increased with the extrusion temperature and moisture content and also with the particle size of the flour. The most important parameter influencing the mechanical properties of the dough was the moisture content of the flour and significant differences were observed between fine (<132 μm) and coarse flours (>132–200 μm). The molecular dynamics of particles containing protons in the bound and bulk fractions in each sample do not depend on the extruder parameters or granulation of the obtained fraction. LF NMR results confirmed that extrusion of rice flour led to a significant decrease in the T21 value compared to the control sample and an increase in the T22 value in breads made with flours with particle size <132 μm. A linear relationship was found between the spin-spin relaxation times (T1) changes and the equilibrium water activity (ar). The results showed that bread with extruded rice flour at the same die temperature resulted in a significantly higher bread volume (31%) and lower hardness (27%) compared to the control. The highest hardness was observed in the case of samples prepared with extruded flour with the addition of 15% moisture, regardless of temperature and particle size.