Now showing 1 - 6 of 6
No Thumbnail Available
Publication

The Contribution of Cornelian Cherry (Cornus mas L.) Alcoholic Beverages on the Sensory, Nutritional and Anti-Nutritional Characteristics—In Vitro and In Silico Approaches

2024, Szczepaniak, Oskar, Stachowiak, Barbara, Jeleń, Henryk, Stuper-Szablewska, Kinga, Szambelan, Katarzyna Teresa, Kobus-Cisowska, Joanna

Food producers have focused on novel and attractive raw materials with functional properties. Cornelian cherry (Cornus mas L.) fruits contain numerous compounds that may be beneficial for health. Objective: This study aimed to compare and assess the physicochemical properties and amygdalin levels in brandy and liquor prepared from frozen cornelian cherry fruits. Density functional theory-based B3LYP functionals were used to analyze the spectral and optical properties of amygdalin. The contents of the compounds and volatile products of amygdalin decay were found in two spirituose beverages of Cornus mas, using HPLC and GC-MS. Significant differences in their physicochemical properties were detected between the samples. Alcoholic beverages based on cornelian cherry fruits were rich in a wide range of functional ingredients with a low concentration of amygdalin. In silico analysis showed that orbital density diffusion has a major effect on the physical properties of amygdalin, while differences between the polarities of water and ethanol had no noticeable effect on the spectral properties of the compound. Cornelian cherry-based alcoholic drinks might be interesting functional products with rich aromatic bouquets. The amygdalin concentration is low enough to pose no toxicological threat, but rather shapes the tastory bouquet of the products. Levels of amygdalin may be controlled using the same analytical methods for solutions with different ethanol–water ratios.

No Thumbnail Available
Publication

Combining Targeted Metabolomics with Untargeted Volatilomics for Unraveling the Impact of Sprouting on the Volatiles and Aroma of False Flax (Camelina sativa) Cold-Pressed Oil

2024, Drabińska, Natalia, Siger, Aleksander, Majcher, Małgorzata A., Jeleń, Henryk

No Thumbnail Available
Publication

Betaine supplementation modulates betaine concentration by methylenetetrahydrofolate reductase genotype, but has no effect on amino acid profile in healthy active males: A randomized placebo-controlled cross-over study

2024, Zawieja, Emilia, Drabińska, Natalia, Jeleń, Henryk, Szwengiel, Artur, Durkalec-Michalski, Krzysztof, Chmurzyńska, Agata

No Thumbnail Available
Publication

Cape gooseberry (Physalis peruviana L.) volatile compounds determination by Vacuum-Assisted Sorbent Extraction (VASE) - selected aspects

2024, Jeleń, Henryk, Marcinkowska, Monika

Vacuum-Assisted Sorbent Extraction (VASE) is a novel extraction technique that uses vacuum to facilitate the transfer of volatile compounds from the matrix to the sorbent. This technique was explored for extraction of volatiles from cape gooseberry fruit, for both qualitative and quantitative analyses. Selected extraction parameters were tested: sample size, extraction temperature and time, influence of tissue disintegration on release of volatiles, and also addition of Ag+1 ions in the form of AgNO3 to stop enzymatic formation of volatile compounds. For selected conditions (10 g sample, extraction for 30 min. at 40 °C of volatiles from blended fruit) quantitative aspects were explored. Twenty-two compounds of cape gooseberry were tested. The method was characterized with a very good linearity in a range of 10–5000 µg/kg and good reproducibility. The experiments proved the usefulness of VASE in both volatile profiling and quantitative analyses of cape gooseberry and in prospective other fruit.

No Thumbnail Available
Publication

Unravelling the importance of seed roasting for oil quality by the non-targeted volatilomics and targeted metabolomics of cold-pressed false flax (Camelina sativa L.) oil and press cakes

2024, Drabińska, Natalia, Siger, Aleksander, Jeleń, Henryk

No Thumbnail Available
Research Project

Redefiniowana analiza związków zapachowych i lotnych żywności. Co kryje się za volatilomiką żywności?