Extension of Iber for Simulating Non–Newtonian Shallow Flows: Mine-Tailings Spill Propagation Modelling
2024, Sanz-Ramos, Marcos, Bladé, Ernest, Sánchez-Juny, Martí, Dysarz, Tomasz
Mine tailings are commonly stored in off-stream reservoirs and are usually composed of water with high concentrations of fine particles (microns). The rupture of a mine-tailings pond promotes, depending on the characteristics of the stored material, the fluidization and release of hyper-concentrated flows that typically behave as non–Newtonian fluids. The simulation of non–Newtonian fluid dynamics using numerical modelling tools is based on the solution of mass and momentum conservation equations, particularizing the shear stress terms by means of a rheological model that accounts for the properties of the fluid. This document presents the extension of Iber, a two-dimensional hydrodynamic numerical tool, for the simulation of non–Newtonian shallow flows, especially those related to mine tailings. The performance of the numerical tool was tested throughout benchmarks and real study cases. The results agreed with the analytical and theoretical solutions in the benchmark tests; additionally, the numerical tool also revealed itself to be adequate for simulating the dynamic and static phases under real conditions. The outputs of this numerical tool provide valuable information, allowing researchers to assess flood hazard and risk in mine-tailings spill propagation scenarios.
Environmental Restoration and Changes of Sediment and Hydrodynamic Parameters in a Section of a Renaturalised Lowland Watercourse
2024, Zaborowski, Stanisław, Kałuża, Tomasz, Jusik, Szymon, Dysarz, Tomasz, Hammerling, Mateusz
In Europe, the routes of most watercourses were straightened and shortened, leading to the destruction and degradation of many natural environments. Currently, in places where it is possible, as part of the implementation of the Water Framework Directive, efforts are made to improve environmental sustainability, including improving the ecological condition of rivers. This paper presents the impact of three in-stream deflectors on changes in the section of a small lowland river—the Flinta (Poland)—where (from 2018 to 2023) detailed, systematic geodetic, and hydrometric research and an assessment of the ecological conditions were carried out. The presented results show the influence of deflectors on the initiation of fluvial processes in the transverse and longitudinal layouts of the channel. The river channel was narrowed from 6 to 5 m, and the current line shifted by almost 3 m. Changes were observed in the distribution of velocities and shear stresses, varying along the surveyed section of the river. In the first year after their application, an increase in velocity at the deflectors can be observed (from 0.2 m∙s−1 to 0.6 m∙s−1 in the deflector cross-section). In the following years, on the other hand, a clear decrease in velocity was observed in the sections between the deflectors (to 0.3 m∙s−1). The introduction of deflectors resulted in a significant increase in the values of shear stresses (from an average value of 0.0241 N∙m−2 in 2018 to 0.2761 N∙m−2 in 2023) and local roughness coefficients (from 0.045 s∙m−1/3 before the introduction of the deflectors to 0.070 s∙m−1/3 in 2023). Based on analyses of sediment samples, erosion and accumulation of bottom material were initially observed, followed by a subsequent stabilisation of particle size. Differences in grain size were observed, especially in the cross-section of the deflectors (increase in granularity d50% downstream of the deflector from 0.31 mm to 3.9 mm already 2 years after the introduction of deflectors). This study confirmed the positive impact of using deflectors on hydromorphological processes as deflectors facilitate the achievement of a good ecological status, as required by the WFD. The innovation of this paper lies in demonstrating the possibility of using small, simple structures to initiate and intensify fluvial processes, which may contribute to improving the ecological conditions of watercourses.
Assessment of Climate Change Impact on Flood Hazard Zones
2024, Dysarz, Tomasz, Marcinkowski Paweł, Wicher-Dysarz, Joanna, Piniewski Mikołaj, Dorota Mirosław-Świątek, Kundzewicz, Zbigniew W.
AbstractThere have been many destructive pluvial and fluvial floods in Poland and the projection of increasing flood hazards in the future is a reason of considerable concern. The maps of river hazard zones are changing over time, and understanding these changes is of primary importance for flood risk reduction and climate change adaptation. This article aims to assess the impact of climate change on the spatial extent and depth classes of flood hazard zones for a selected reach of the River Warta in the western part of Poland. To this end, we integrated the Soil & Water Assessment Tool (SWAT) hydrological model of the Warta River Basin with the 1D hydraulic model HEC-RAS of the selected reach. The climate change effect was quantified based on the coupled model simulations forced with bias-corrected projections from the EURO-CORDEX project. Flood hazard maps were developed for two townships along the River Warta (Oborniki and Wronki), three greenhouse gas concentration scenarios (one for the baseline scenario in the reference period, 1971–2000; one for RCP 4.5 and one for RCP 8.5, for the time horizon 2021–2050) and for three return periods (10-, 100- and 500-year floods). Based on the ensemble mean, the increase in the flooded area projected in the future is more pronounced for RCP8.5 than for RCP4.5. This unique combination of software and data enabled the transformation of climate change impact into the land surface part of the hydrological cycle and assessment of changes in flood hazard and opens the way to assess the potential increases in the economic losses in the future.