Now showing 1 - 2 of 2
No Thumbnail Available
Publication

Study of Microstructure, Texture, and Cooking Qualities of Reformulated Whole Wheat Flour Pasta by Substituting Water with Stearic Acid–Candelilla Wax–Groundnut Oil Oleogel

2024, Chaturvedi, Diksha, Dhal, Somali, Sahu, Deblu, Jarzębski, Maciej, Anis, Arfat, Kim, Doman, Pal, Kunal

Oleogels, which are traditionally utilized to reduce saturated and trans fats in bakery foods, have recently shown promising applications in non-bakery foods, particularly in the enhancement of their food texture and cooking qualities. This study investigates the impact of incorporating stearic acid-containing candelilla wax–groundnut oil oleogel in various proportions on the production of whole wheat pasta. Five different pasta samples were prepared by replacing water with oleogels in varying concentrations (2.5%, 5%, 10%, and 15%), and their physicochemical attributes were evaluated using a range of analytical methods for both cooked and uncooked pasta (like microscopy, colorimetry, dimensional analysis, texture, cooking qualities, moisture content, and FTIR). Significant differences in width, thickness, and color properties were observed between the control sample (0% oleogel) and those containing oleogel, with notable variations in surface texture and color intensities, particularly with the higher oleogel content (p < 0.05). Cooked pasta exhibited lower L* values and higher a* values than uncooked pasta. Stereo zoom microscope and field emission scanning electron microscope (FESEM) micrographs demonstrated a change in the pasta surface topology and microstructures. Dark spots on the pasta with greater oleogel concentrations (samples with 10% and 15% oleogel replacement) suggest the formation of starch–lipid complexes. Cooking induced pore formation, which was more pronounced when the oleogel content was increased, impacted the water absorption capacity, swelling index, and moisture content. The cooked samples exhibited higher moisture content and improved polymer network stability compared to the uncooked ones, indicating the potential of oleogel incorporation to modulate pasta properties in a concentration-dependent manner. These findings underscore the versatility of oleogels when their applications are diversified in non-bakery foods to enhance food texture and quality.

No Thumbnail Available
Publication

Role of Stearic Acid as the Crystal Habit Modifier in Candelilla Wax-Groundnut Oil Oleogels

2023, Chaturvedi, Diksha, Bharti, Deepti, Dhal, Somali, Sahu, Deblu, Behera, Haladhar, Sahoo, Minaketan, Kim, Doman, Jarzębski, Maciej, Anis, Arfat, Mohanty, Biswaranjan, Sagiri, Sai S., Pal, Kunal

This study investigated the effects of incorporating stearic acid (SAC) in candelilla wax (CW) and groundnut oil (GO) oleogel with potential health benefits as an alternative to saturated fats in processed foods. Results showed that SAC possesses crystal habit-modifying properties on the oleogels, causing its average crystallite size to increase, as observed through polarized light microscopy and XRD analysis. Additionally, SAC caused an increase in ordering within the crystallite network as a result of the decrease in d-spacing. Interestingly, the firmness of the oleogels remained unaffected, even at a higher fraction of SAC. It is believed to be due to the interference caused by the crystallization of high-melting SAC within the fine crystal network of CW-GO oleogel. However, adding 3 mg of SAC significantly increased the work of the shear of the oleogel (SAC3), which decreased the spreadability. As observed through colorimetric analysis, SAC3 showed a dense and uniform distribution of prominent bright crystals with minimal amorphous regions, leading to a high whiteness index. SAC3 also demonstrated the highest compactness and dislocation density among the oleogels, likely due to the formation of prominent crystals. However, SAC did not affect the overall oleogel crystallization rate. SAC3 had delayed secondary crystallization and thermal equilibrium by having a prolonged crystallization time of CW crystals. In the case of controlled delivery studies, the addition of SAC improved CPCR. On the other hand, CPCR decreased with the increase in SAC amount, where SAC3 showed a moderate curcumin release ability among the oleogels.