Impact of Groundnut Oil/Candelilla Wax Oleogel Replacement on Physicochemical Properties of Whole Wheat Pasta
2024, Kabi, Sandhya Rani, Sahu, Deblu, Jarzębski, Maciej, Anis, Arfat, Kim, Doman, Nayak, Amit Kumar, Pal, Kunal
AbstractThe current study investigates replacing water (2.5–15%) in whole wheat pasta with groundnut oil/candelilla wax (GNO/CW) oleogel. To assess the impact of incorporating GNO/CW oleogel at varied concentrations, both uncooked and cooked pasta samples are physicochemically characterized. The water absorption capacity of oleogel‐containing cooked pasta samples is found to be lower. Microscopic analysis of the surface of pasta samples (uncooked and cooked) exhibits considerable changes in their topology as the composition varied. Black patches on the cooked pasta samples are observed when the GNO/CW oleogel replacement is on the higher side (10% and 15% replacement), implying the formation of starch–lipid complexes. FTIR analysis is performed to analyze the changes in functional groups and molecular bonds. There are no major changes in the water and the starch regions of pasta samples (uncooked and cooked). The addition of GNO/CW oleogel in the pasta samples enhances their stiffness. Additionally, the pasta samples exhibit viscoelastic properties. Therefore, the incorporation of GNO/CW oleogel into the whole wheat pasta dough can change the physicochemical properties of both uncooked and cooked pasta samples.
Study of Microstructure, Texture, and Cooking Qualities of Reformulated Whole Wheat Flour Pasta by Substituting Water with Stearic Acid–Candelilla Wax–Groundnut Oil Oleogel
2024, Chaturvedi, Diksha, Dhal, Somali, Sahu, Deblu, Jarzębski, Maciej, Anis, Arfat, Kim, Doman, Pal, Kunal
Oleogels, which are traditionally utilized to reduce saturated and trans fats in bakery foods, have recently shown promising applications in non-bakery foods, particularly in the enhancement of their food texture and cooking qualities. This study investigates the impact of incorporating stearic acid-containing candelilla wax–groundnut oil oleogel in various proportions on the production of whole wheat pasta. Five different pasta samples were prepared by replacing water with oleogels in varying concentrations (2.5%, 5%, 10%, and 15%), and their physicochemical attributes were evaluated using a range of analytical methods for both cooked and uncooked pasta (like microscopy, colorimetry, dimensional analysis, texture, cooking qualities, moisture content, and FTIR). Significant differences in width, thickness, and color properties were observed between the control sample (0% oleogel) and those containing oleogel, with notable variations in surface texture and color intensities, particularly with the higher oleogel content (p < 0.05). Cooked pasta exhibited lower L* values and higher a* values than uncooked pasta. Stereo zoom microscope and field emission scanning electron microscope (FESEM) micrographs demonstrated a change in the pasta surface topology and microstructures. Dark spots on the pasta with greater oleogel concentrations (samples with 10% and 15% oleogel replacement) suggest the formation of starch–lipid complexes. Cooking induced pore formation, which was more pronounced when the oleogel content was increased, impacted the water absorption capacity, swelling index, and moisture content. The cooked samples exhibited higher moisture content and improved polymer network stability compared to the uncooked ones, indicating the potential of oleogel incorporation to modulate pasta properties in a concentration-dependent manner. These findings underscore the versatility of oleogels when their applications are diversified in non-bakery foods to enhance food texture and quality.
Evaluation of the Effect of Stearyl Alcohol and Span-60 Tuned Sunflower Wax/Sunflower Oil Oleogel on Butter Replacement in Whole Wheat Cake
2023, Bharti, Deepti, Banerjee, Indranil, Makowska, Agnieszka, Jarzębski, Maciej, Kowalczewski, Przemysław, Pal, Kunal
Scientists are concerned about the health risks associated with consuming a diet high in saturated fats. In this regard, oleogels have been used as a shortening substitute by researchers. This present study evaluated the role of stearyl alcohol (SA)-, and Span-60 (SP)-tailored sunflower wax/sunflower oil oleogels upon butter replacement in whole wheat batter and cake. The evaluation of the cake batter under PLM microscopy revealed that a complete replacement of butter with SA-containing oleogels, i.e., Sa-C, showed homogenously distributed smaller gas cells. A uniform distribution of gas cells assists in stabilization and contributes to the porosity of the cake. The DSC and FTIR studies confirmed the prominent melting of amylose-lipid complexes in batter Sa-C. The baked cake Sa-C showed the existence of large pores in the cake matrix, which may have assisted in softening the cake. Further, low starch–lipid interactions were also observed in the FTIR spectra of Sa-C cake crumbs. The SR studies of cake crumbs revealed a higher stress-relaxing ability in Sa-C from the control. Although there were no observed variations in the cake hardness values, Sa-C showed a reduction in the chewiness from the control. This current study suggests the possibility of using emulsifier-tailored oleogels as a potential substitute for butter in the baking formulation.
Effect of soy wax/rice bran oil oleogel replacement on the properties of whole wheat cookie dough and cookies
2023, Pradhan, Aditi, Anis, Arfat, Alam, Mohammad Asif, Al-Zahrani, Saeed M., Jarzębski, Maciej, Pal, Kunal
This study investigated the replacement of butter with soy wax (SW)/rice bran oil (RBO) oleogel in varied proportions in cookie dough and the resulting cookies. The study mainly evaluates the physical, textural, and chemical properties of the butter cookie dough and cookies by replacing butter with SW/RBO oleogel. The dough was assessed using moisture analysis, microscopy, FTIR Spectroscopy (Fourier Transform Infrared) and impedance spectroscopies, and texture analysis. Micrographs of the dough showed that D-50 (50% butter + 50% oleogel) had an optimal distribution of water and protein. D-0 (control sample containing 100% butter) showed the lowest impedance values. Moisture content ranged between 23% and 25%. FTIR spectroscopy suggested that D-50 exhibited a consistent distribution of water and protein, which CLSM and brightfield microscopy supported. Texture analysis revealed that the dough samples exhibited predominantly fluidic behavior. As the amount of oleogel was raised, the dough became firmer. The prepared cookies showed a brown periphery and light-colored center. Further, a corresponding increase in surface cracks was observed as the oleogel content was increased. Cookies moisture analysis revealed a range between 11 and 15%. Minute changes were observed in the texture and dimensions of the cookies. In summary, it can be concluded that replacing butter with oleogel by up to 50% seems to be feasible without significantly compromising the physicochemical properties of cookie dough and cookies.