Now showing 1 - 2 of 2
No Thumbnail Available
Publication

The Effect of Polyethylene Glycol Addition on Improving the Bioconversion of Cellulose

2024, Szentner, Kinga Krystyna, Waśkiewicz, Agnieszka, Imbiorowicz, Robert, Borysiak, Sławomir

In recent years, many studies have focused on improving the bioconversion of cellulose by adding non-ionic surfactants. In our study, the effect of the addition of a polymer, polyethylene glycol (PEG 4000), on the bioconversion of different cellulose materials was evaluated, focusing on the hydrolysis efficiency and structural changes in pure cellulose after the enzymatic hydrolysis process. The obtained results showed that the addition of non-ionic surfactant significantly improved the digestibility of cellulosic materials. The highest hydrolysis efficiency was observed for Sigmacel 101 (Cel-S101) cellulose, which consists mainly of amorphous regions. In the case of Avicel cellulose (Cel-A), PEG had a lesser effect on the bioconversion’s efficiency due to limited access to the crystal structure and limited substrate–cellulase interactions. The consistency of the obtained results is confirmed by qualitative and quantitative analyses (XRD, FTIR, and HPLC). Our findings may be helpful in further understanding the mechanism of the action of surfactants and improving the enzymatic hydrolysis process.

No Thumbnail Available
Publication

Timber from Historical Foundation Piles Made of Oak Wood (Quercus robur L.)

2025, Jurecki, Andrzej, Szentner, Kinga, Jarzębski, Maciej, Wieruszewski, Marek

Oak wood is a popular construction material in Europe. In the course of its service life, this wood is subject to structural changes resulting from the environmental conditions to which it is exposed, in addition to the effects of aging. Samples of naturally occurring historic European oak (Quercus robur L.) were obtained from foundation piles that were utilized to reinforce the riverbanks in Poland, the Vistula River basin, dating to the 2nd century, as well as from a 14th-century settlement on the river in Slupsk. Reference wood was also obtained from contemporary harvesting operations in the vicinity of Slupsk, Poland. The presence of structural changes resulting from partial wood degradation was confirmed through the utilization of FTIR spectroscopy analysis, SEM with BSD microscopy, and chromatic parameters. The differences in the color of historic and reference wood were significant (based on Kruskal–Wallis test = 46.38, where p < 0.001). The results of chemical analysis showed an increase in the proportion of lignin and a decrease in carbohydrate components for the old wood. A higher degree of change in lignin content was observed in historic wood (32–38%) compared to the fresh wood sample (25%). Our study showed that the collected data can be applied to the preparation database of heritage wood materials.