Now showing 1 - 4 of 4
No Thumbnail Available
Publication

Transcriptomic Characterization of Candidate Genes for Fusarium Resistance in Maize (Zea mays L.)

2025, Sobiech, Aleksandra, Tomkowiak, Agnieszka, Jamruszka, Tomasz, Kosiada, Tomasz, Spychała, Julia, Lenort, Maciej, Bocianowski, Jan

Fusarium diseases are among the most dangerous fungal diseases of plants. To date, there are no plant protectants that completely prevent fusariosis. Current breeding trends are therefore focused on increasing genetic resistance. While global modern maize breeding relies on various molecular genetics techniques, they are useless without a precise characterization of genomic regions that determine plant physiological responses to fungi. The aim of this study was thus to characterize the expression of candidate genes that were previously reported by our team as harboring markers linked to fusarium resistance in maize. The plant material included one susceptible and four resistant varieties. Biotic stress was induced in adult plants by inoculation with fungal spores under controlled conditions. qRT-PCR was performed. The analysis focused on four genes that encode for GDSL esterase/lipase (LOC100273960), putrescine hydroxycinnamyltransferase (LOC103649226), peroxidase 72 (LOC100282124), and uncharacterized protein (LOC100501166). Their expression showed differences between analyzed time points and varieties, peaking at 6 hpi. The resistant varieties consistently showed higher levels of expression compared to the susceptible variety, indicating their stronger defense responses. Moreover, to better understand the function of these genes, their expression in various organs and tissues was also evaluated using publicly available transcriptomic data. Our results are consistent with literature reports that clearly indicate the involvement of these genes in the resistance response to fusarium. Thus, they further emphasize the high usefulness of the previously selected markers in breeding programs to select fusarium-resistant maize genotypes.

No Thumbnail Available
Publication

DArTseq-Based, High-Throughput Identification of Novel Molecular Markers for the Detection of Fusarium Resistance in Maize

2025, Lenort, Maciej, Tomkowiak, Agnieszka, Sobiech, Aleksandra, Bocianowski, Jan, Jarzyniak, Karolina Maria, Olejnik, Przemysław, Jamruszka, Tomasz, Gawrysiak, Przemysław

Modern maize breeding worldwide relies on a broad range of molecular genetics research techniques. These technologies allow us to identify genomic regions associated with various phenotypic traits, including resistance to fungi of the genus Fusarium. Therefore, the aim of this publication was to identify new molecular markers linked to candidate genes that confer maize resistance to Fusarium fungi, using next-generation sequencing, association mapping, and physical mapping. In the study, a total of 5714 significant molecular markers related to maize plant resistance to Fusarium fungi were identified. Of these, 10 markers were selected that were significantly associated (with the highest LOD values) with the disease. These markers were identified on chromosomes 5, 6, 7, 8, and 9. The authors were particularly interested in two markers: SNP 4583014 and SilicoDArT 4579116. The SNP marker is located on chromosome 5, in exon 8 of the gene encoding alpha-mannosidase I MNS5. The SilicoDArT marker is located 240 bp from the gene for peroxisomal carrier protein on chromosome 8. Our own research and the presented literature review indicate that both these genes may be involved in biochemical reactions triggered by the stress caused by plant infection with Fusarium fungal spores. Molecular analyses indicated their role in resistance processes, as resistant varieties responded with an increase in the expression level of these genes at various time points after plant inoculation with Fusarium fungal spores. In the negative control, which was susceptible to Fusarium, no significant fluctuations in the expression levels of either gene were observed. Analyses concerning the identification of Fusarium fungi showed that the most abundant fungi on the infected maize kernels were Fusarium poae and Fusarium culmorum. Individual samples were very sparsely colonized by Fusarium or not at all. By using various molecular technologies, we identified genomic regions associated with maize resistance to Fusarium fungi, which is of fundamental importance for understanding these regions and potentially manipulating them.

No Thumbnail Available
Publication

Identification and Analysis of Candidate Genes Associated with Yield Structure Traits and Maize Yield Using Next-Generation Sequencing Technology

2024, Nowak, Bartosz, Tomkowiak, Agnieszka, Sobiech, Aleksandra, Bocianowski, Jan, Kowalczewski, Przemysław Łukasz, Spychała, Julia, Jamruszka, Tomasz

The main challenge of agriculture in the 21st century is the continuous increase in food production. In addition to ensuring food security, the goal of modern agriculture is the continued development and production of plant-derived biomaterials. Conventional plant breeding methods do not allow breeders to achieve satisfactory results in obtaining new varieties in a short time. Currently, advanced molecular biology tools play a significant role worldwide, markedly contributing to biological progress. The aim of this study was to identify new markers linked to candidate genes determining grain yield. Next-generation sequencing, gene association, and physical mapping were used to identify markers. An additional goal was to also optimize diagnostic procedures to identify molecular markers on reference materials. As a result of the conducted research, 19 SNP markers significantly associated with yield structure traits in maize were identified. Five of these markers (28629, 28625, 28640, 28649, and 29294) are located within genes that can be considered candidate genes associated with yield traits. For two markers (28639 and 29294), different amplification products were obtained on the electrophorograms. For marker 28629, a specific product of 189 bp was observed for genotypes 1, 4, and 10. For marker 29294, a specific product of 189 bp was observed for genotypes 1 and 10. Both markers can be used for the preliminary selection of well-yielding genotypes.

No Thumbnail Available
Publication

Transcriptomic Characterization of Genes Harboring Markers Linked to Maize Yield

2024, Tomkowiak, Agnieszka, Jamruszka, Tomasz, Bocianowski, Jan, Sobiech, Aleksandra, Jarzyniak, Karolina Maria, Lenort, Maciej, Mikołajczyk, Sylwia, Żurek, Monika

Background: It is currently believed that breeding priorities, including maize breeding, should focus on introducing varieties with greater utility value, specifically higher yields, into production. Global modern maize breeding relies on various molecular genetics techniques. Using the above mentioned technologies, we can identify regions of the genome that are associated with various phenotypic traits, including yield, which is of fundamental importance for understanding and manipulating these regions. Objectives: The aim of the study was to analyze the expression of candidate genes associated with maize yield. To better understand the function of the analyzed genes in increasing maize yield, their expression in different organs and tissues was also assessed using publicly available transcriptome data. Methods: RT-qPCR analyses were performed using iTaq Universal SYBR Green Supermix (Bio-Rad, Hercules, CA, USA) and CFX96 Touch Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA). Each of the performed RT-qPCR experiments consisted of three biological replicates and three technical replicates, the results of which were averaged. Results: The research results allowed us to select three out of six candidate genes (cinnamoyl-CoA reductase 1—CCR1, aspartate aminotransferase—AAT and sucrose transporter 1—SUT1), which can significantly affect grain yield in maize. Not only our studies but also literature reports clearly indicate the participation of CCR1, AAT and SUT1 in the formation of yield. Identified molecular markers located within these genes can be used in breeding programs to select high yielding maize genotypes.