Application of Chia and Flaxseed Meal as an Ingredient of Fermented Vegetable-Based Spreads to Design Their Nutritional Composition and Sensory Quality
2025, Waszkowiak, Katarzyna, Szymandera-Buszka, Krystyna, Kidoń, Marcin, Kobus-Cisowska, Joanna, Brzozowska, Anna, Kowiel, Angelika, Jarzębski, Maciej, Radziejewska-Kubzdela, Elżbieta
Fermented vegetable spreads could offer an opportunity to diversify the range of plant-based foods. The challenge in developing the spreads is to achieve high quality, including stable consistency, consumer desirability and high nutritional value. The aim was to evaluate the application of chia and flaxseed meal for fermented zucchini-cucumber spread production. The effect on the chemical composition, phenolic compound content, antioxidant activity, and sensory quality of the vegetable spread was evaluated. Its color, viscosity, and microstructure were also analyzed using instrumental methods. The meal addition varied from 4.0 to 14.0%. The spread with meal addition had higher fat, protein, ash, and dietary fiber content than the control. Total free phenolic compound content and antioxidant activity also increased, and chia seed meal impacted the parameters more. On the contrary, flaxseed meal improved more the product’s consumer desirability than chia. Both were effective gelling agents that increased viscosity and enhanced product spreadability, and only flaxseed meal showed a masking ability. Its addition reduced the perception and intensity of the bitter, tart, and sour taste. The spread formula consisting of fermented zucchini and cucumber with 9 to 11.5% flaxseed meal addition was the most recommended to achieve the product with high consumer desirability.
Research on Application of Japanese Quince (Chaenomeles L.) and Pork Collagen in Dark Chocolate—Benefits in Prevention of Inflammation In Vitro Model
2024, Byczkiewicz, Szymon, Szwajgier, Dominik, Baranowska-Wójcik, Ewa, Telichowska, Aleksandra, Szymandera-Buszka, Krystyna, Wojtczak, Janusz, Kobus-Cisowska, Joanna
In the present study, the effect of the addition of quince and collagen type I and III to dessert chocolate on its functional properties was determined. The study evaluated the antioxidant potential of the tested formulations using the FRAP method and the linoleic acid oxidation test and beta-carotene bleaching test. The tested samples were also evaluated for inhibitory activity against enzymes important in preventive health (inflammation and neurodegenerative disorders) namely: AChE, BChE, GR, GPx, COX, and SOD. The addition of quince and collagen to the chocolate samples resulted in higher activity compared to the control sample, as indicated by the FRAP test. The experiment highlighted the impact of including quince fruit on the antioxidant activity of the chocolate samples. Interestingly, merely increasing the quince fruit amount did not consistently enhance antioxidant potential. Specifically, chocolate samples with a lower proportion of quince fruit (2 g/100 g) exhibited greater antioxidant activity when supplemented with collagen I. Conversely, in samples with higher quince percentages (3 g and 4 g), those enriched with collagen III showed higher antioxidant activity. Similar correlations were observed in the linoleic acid oxidation test. Notably, samples containing 3 g and 4 g of quince and type III collagen demonstrated statistically similar highest antioxidant properties. Regardless of the collagen type used, there was no observed increase in activity towards the tested enzymes for samples with the lowest percentage of quince fruit. Both collagen types exhibited the highest activity in the inhibition assay against acetylcholinesterase and butyrylcholinesterase when combined with 3 g and 4 g of quince. Overall, the experimental incorporation of both fruit and collagen enhanced the chocolates’ activity. Similarly to the antioxidant activity findings, chocolates with lower quince fruit quantities showed increased activity when supplemented with collagen III, while those with higher quince content (3 g and 4 g) displayed higher activity with collagen I. Bitter chocolate by itself is an attractive food product, rich in many bioactive compounds. However, enriching it with other attractive raw materials can make its properties and taste even more attractive.
The effect of iodine fortification on – the antioxidant activity of carrots and cauliflower
2024, Jankowska, Agata, Szymandera-Buszka, Krystyna