The energy efficiency analysis of sorghum waste biomass grown in a temperate climate
2025, Czekała, Wojciech, Frankowski, Jakub, Sieracka, Dominika, Pochwatka, Patrycja, Kowalczyk-Juśko, Alina, Witaszek, Kamil, Dudnyk, Alla, Zielińska, Aleksandra, Wisła-Świder, Anna, Dach, Jacek
Fundamentals, Operation and Global Prospects for the Development of Biogas Plants-A Review
2024, Gadirli, Gulnar, Pilarska, Agnieszka, Dach, Jacek, Pilarski, Krzysztof, Kolasa-Więcek, Alicja, Borowiak, Klaudia
As the global demand for renewable energy continues to rise, biogas production has emerged as a promising solution for sustainable energy generation. This review article presents the advantages of biogas technologies (mainly agricultural, based on waste of animal and plant origin) and extensively discusses the main principles of biogas production in the anaerobic digestion (AD). In this respect, the main parameters of the process, which require monitoring and decisive for its efficiency are described, therefore: temperature, pH value, retention time and organic loading rate (OLR). The principles of substrate selection are also discussed and the necessity and advantages of the use of organic waste according to the model of a circular economy and the concept of sustainable development, are indicated. It is emphasized that according to the new European regulations, the crops classified as food cannot be considered energy crops. The part on biogas production is summarised with an explanation of the necessity to treat and purify biogas. Biogas purification is important from the point of view of the efficiency of its conversion into electricity. A special place in this paper is devoted to the design, construction, functioning and operation of biogas plants, based on both scientific and practical aspects. In conclusion of this chapter, the economic aspects and profitability of operating biogas plants are discussed. Cost and benefit analyses are the major tool used for the systematic evaluation of the financial costs and potential benefits associated with the operation of biogas plants. The important fact is that the return on investment can be achieved within a few years, provided the activities are well-planned and executed. In addition to the fundamental issues of the operation of biogas plants, this article presents the global situation regarding the development of biogas plants, discussing in detail the specific needs and limitations on different continents. It is a interesting and extensive part of this article. The global agricultural biogas market is at very different levels of development. Most such installations are located in Asia and Europe. China has the highest number of biogas plants, with more than 100,000 biogas plants, followed by Germany with over 10,000 plants. In addition to the 100,000 biogas plants, China also has a large number of household biogas units, which gives a total of approx. 40 million operating units. The article concludes with a discussion of opportunities and barriers to the development of biogas plants, pointing to: financial issues, access to feedstock, political regulations, public awareness and the geopolitical situation. The most frequently cited reasons for investment failure include economic problems, lack of professional knowledge.
Leverage of Essential Oils on Faeces-Based Methane and Biogas Production in Dairy Cows
2023, Mazurkiewicz, Jakub, Sidoruk, Pola, Dach, Jacek, Szumacher, Małgorzata, Lechniak, Dorota, Galama, Paul, Kuipers, Abele, Antkowiak, Ireneusz Ryszard, Cieślak, Adam
Currently, there is an ongoing intensive search for solutions that would effectively reduce greenhouse gas emissions (mainly methane) into the environment. From a practical point of view, it is important to reduce methane emissions from cows in such a way as to simultaneously trim emissions from the digestive system and increase its potential production from feces, which is intended as a substrate used in biogas plants. Such a solution would not only lower animal-based methane emissions but would also enable the production of fuel (in chemical form) with a high yield of methane from biogas, which would boost the economic benefits and reduce the use of fossil fuels. We tested the effect of administering an essential oil blend consisting of 5.5% oils and fats on methane and biogas production from dairy cow feces during fermentation. Three subsequent series (control and experimental) were conducted in dairy cows fed a total mixed ration (TMR) rich in brewer’s cereals and beet pulp, with 20% dry matter (DM) of the total diet. Cows from the experimental group received 20 g/cow/day of essential oil blend, namely a commercial additive (CA). The study showed that CA can increase the production of methane and biogas from dairy cow feces. It can be concluded that in the experimental groups, approx. 15.2% and 14.4% on a fresh matter basis and 11.7% and 10.9% on a dry matter basis more methane and biogas were generated compared to the control group, respectively. Therefore, it can be assumed that the use of CA in cow nutrition improved dietary digestibility, which increased the efficiency of the use of feces organic matter for biogas production.
Profitability of the agricultural biogas plants operation in Poland, depending on the substrate use model
2023, Czekała, Wojciech, Jasiński, Tomasz, Dach, Jacek
Research on a New Method of Water Recovery from Biogas Plant Digestate
2024, Nowak, Mateusz, Czekała, Wojciech, Bojarski, Wiktor, Dach, Jacek
Digestate is a product with valuable fertilizing properties, remaining after the anaerobic fermentation process. An essential feature of the substance in question is its high water content of up to 97%. To improve the fertilizer value of the digestate, it is necessary to dehydrate it to produce a concentrated product. This paper determined the possibility of dewatering the digestate using an innovative reactor design. The study, conducted on a laboratory scale, used digestate from a Polish biogas plant. The dewatering technique described in the paper is based on the evaporation and condensation of water vapor on the inner surface of the reactor dome. The condensate accumulated on the leach trough and was directed to a storage tank. During the weeks of testing, 11.5 kg of condensate was separated from the initial weight of the digestate (32 kg), with a dry weight of 6.11%. The resulting condensate from dehydration had an average pH value of 9.0 and an average ammonium nitrogen content of 2.07 g∙kg−1. The economic calculations made in the paper allowed for estimating the expected savings associated with the management of digestate in Poland. The research showed the proposed technology’s high potential for dewatering digestate under laboratory conditions.