Antioxidant and antimicrobial activities of Salsola imbricata methanolic extract and its phytochemical characterization
2024, Aamer, Helmy A., Elalem, Saad F., Al-Askar, Abdulaziz A., Sharaf, Omaima A., Gaber, Mahmoud A., Kowalczewski, Przemysław, Behiry, Said, Abdelkhalek, Ahmed
Abstract Methanolic extract from Salsola imbricata was investigated for its phytochemical content, antioxidant, and antimicrobial properties against phytopathogenic fungi and bacteria. Phytochemical analysis revealed the presence of saponin, tannins, and alkaloids with 1.25%, 18.8 mg catechin/g of extract, and 9.12%, respectively. Total flavonoid content was 20.8 mg quercetin equivalent/g while total phenolic content was 202 mg gallic acid equivalent/g. Antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl assay resulted in an IC50 value of 48.61 µg/mL, while the phosphomolybdenum method yielded a value of 215.43 mg ascorbic acid equivalent/g of extract. The highest phenolic acids detected in the extract were gallic acid (712.97 µg/g), syringic acid (742.7 µg/g), and caffeic acid (474.70 µg/g) according to high-performance liquid chromatography analysis. Palmitic acid (28.38%) dominated the fatty acids identified by gas chromatography–mass spectrometry, while stigmasterol (8.34%) was the most abundant steroid. At a concentration of 3 mg/mL, the extract showed strong antibacterial activity against Pectobacterium carotovorum (10.50 mm), Ralstonia solanacearum (9.93 mm), and Pectobacterium atrosepticum (8.37 mm). Additionally, the extract significantly suppressed fungal growth of Rhizoctonia solani (38.22%) and Fusarium oxysporum (33.56%) but showed lower activity toward Botrytis cinerea (13.33%) at 5 mg/mL. In conclusion, S. imbricata extract exhibited promising antioxidant and antimicrobial properties, making it a potential candidate for further exploration in agricultural applications.
HPLC and GC–MS analyses of phytochemical compounds in Haloxylon salicornicum extract: Antibacterial and antifungal activity assessment of phytopathogens
2024, Behiry, Said, Abdelwahab, Eman A., Al-Askar, Abdulaziz A., Kowalczewski, Przemysław, Abdelkhalek, Ahmed
Abstract The present study investigated the phytochemical constituents and antimicrobial effects of aqueous methanolic extract of Haloxylon salicornicum against some phytopathogenic bacterial and fungal strains. The selected bacterial strains were Pectobacterium carotovorum, Pectobacterium atrosepticum, Ralstonia solanacearum, and Streptomyces scabiei, while fungal strains were Fusarium oxysporum, Botrytis cinerea, and Rhizoctonia solani. The extract demonstrated significant efficacy against P. atrosepticum and P. carotovorum at a concentration of 1,000 µg/mL, resulting in inhibition zones measuring 12.3 and 11 mm, respectively. Furthermore, the extract demonstrated considerable effectiveness against fungal strains, achieving an impressive fungal growth suppression rate of 68.8% against R. solani at a concentration of 5,000 µg/mL. The high-performance liquid chromatography analysis identified nine notable phenolic compounds and six common flavonoid compounds in the extract. The identified phenolic compounds in the highest quantities were gallic acid (6427.5 µg/g), vanillin (1145.4 µg/g), chlorogenic acid (498.1 µg/g), and syringic acid (322.5 µg/g). Apigenin (1155.9 µg/g), daidzein (460.9 µg/g), quercetin (382.7 µg/g), and naringenin (160.4 µg/g) exhibited the most significant concentrations of flavonoid compounds. Gas chromatography–mass spectrometry analysis revealed that n-hexadecanoic acid (53.7%), 9-octadecenoic acid (26.9%), 9,12-octadecadienoic acid (Z,Z) (8.67%), palmitic acid, and TMS derivative (4.36%) were the predominant compounds in the extract. Consequently, the H. salicornicum aqueous methanolic extract could be used for the first time as an environmentally safe antimicrobial pesticide agent against plant pathogens to reduce the excessive use of chemical pesticides.
Phytochemical analysis of Bienertia sinuspersici extract and its antioxidant and antimicrobial activities
2024, Aamer, Helmy A., Al-Askar, Abdulaziz A., El-Tanbouly, Rania, Abdelwahab, Eman A., Kowalczewski, Przemysław, El-Messeiry, Sarah, Abdelkhalek, Ahmed, Behiry, Said
Abstract Natural products derived from plants are emerging as a valuable resource for a range of antimicrobial agents in sustainable agriculture. The current work looks for the first time at the antimicrobial properties of a methanolic extract of Bienertia sinuspersici against phytopathogenic microorganisms in vitro, using disk diffusion and food poisoning techniques. The phytochemical analysis revealed the presence of total phenols, flavonoids, and antioxidant activity measured at 34.2, 20.6, and 20.1 mg/g, respectively. Furthermore, the concentrations of tannins, saponins, and alkaloids were documented at 17.6, 9.8, and 3.2 mg/g, respectively. The high-performance liquid chromatography examination of polyphenolic chemicals revealed that gallic acid was the most abundant compound at 2.22 mg/g, whereas methyl gallate was the least abundant at 0.021 mg/g. Gas chromatography–mass spectrometry analysis revealed that the primary components were oleic acid, n-hexadecanoic acid, and methyl ester of 11-octadecenoic acid. The extract had a maximal inhibitory percentage of 57.8% against Fusarium oxysporum at 300 µg/mL, 60.4% against Rhizoctonia solani at 500 µg/mL, and 88.2% against Botrytis cinerea. On the other hand, the extract demonstrated inhibition of Pectobacterium atrosepticum growth by 10.67 mm at a concentration of 100 µg/mL, while Ralstonia solanacearum was inhibited by 9.76 mm and Pectobacterium carotovorum by 9 mm. Overall, the extract of B. sinuspersici demonstrated promising efficacy as antibacterial and antifungal agents against different plant pathogens. Therefore, it could offer a sustainable and environmentally friendly alternative for managing plant diseases.
Phytochemical composition and antifungal effectiveness of Phoenix dactylifera L. rachis extracts
2024, Abdelkhalek, Ahmed, Abdelwahab, Eman A., Elalem, Saad F., Al-Askar, Abdulaziz A., Kowalczewski, Przemysław Łukasz, Behiry, Said
Abstract The present study appraised the inhibitory role of ethanol (PDEE) and ethyl acetate (PDEAE) extracts of Phoenix dactylifera L. against three molecularly identified fungi: Fusarium oxysporum, Botrytis cinerea, and Rhizoctonia solani. HPLC analysis revealed that gallic acid was the major phenolic compound in both extracts: (PDEE: 1721.90 μg/g) and (PDEAE: 101.53 μg/g). The major flavonoids in PDEE are rutin, kaempferol, and quercetin, whereas PDEAE contains kaempferol, naringenin, and quercetin. The GC-MS showed 11-octadecenoic acid methyl ester (26.25%) is the highest compound in PDEE, while diisooctyl phthalate (18.82%) is the most important compound in PDEAE. At 50 μg/mL, the inhibition percentage of PDEAE initiated the highest growth inhibition of F. oxysporum (49.63%) and R. solani (71.43%). Meanwhile, PDEE at 200 μg/mL initiated an inhibition value of 77.78% for B. cinerea. As a result, PDEAE is considered more effective than PDEE in controlling the growth of selected isolates.
Porous silicon nanostructures: Synthesis, characterization, and their antifungal activity
2024, Nabil, Marwa, Elnouby, Mohamed, Al-Askar, Abdulaziz A., Kowalczewski, Przemysław Łukasz, Abdelkhalek, Ahmed, Behiry, Said I.
Abstract The use of synthetic pesticides has come under scrutiny, and there has been a subsequent shift toward the investigation of alternative methods for the treatment of plant diseases. One notable advancement in this field is the utilization of porous silicon (PS) powder as a sustainable antifungal agent. The synthesis of PS nanoparticle (PS-NP) powder was carried out using the environmentally friendly ultrasonication process. X-ray powder diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, UV-VIS absorbance, and photoluminescence were some of the methods used to characterize PS-NPs. The different characterization methods revealed the formation of a nanocrystalline structure possessing a cubic Si crystalline quality. The crystal size of PS-NPs, as determined from X-ray diffractometer data, ranges from 36.67 to 52.33 nm. The obtained PS has a high band gap of 3.85 eV and presents a photoluminescence peak at 703 nm. The antifungal activity of the synthesized PS-NPs was assessed against three molecularly characterized fungi, namely Rhizoctonia solani, Fusarium oxysporum, and Botrytis cinerea, which were obtained from tomato plants. The concentration of PS-NPs at 75 µg/mL exhibited the highest enhancement in growth inhibition percentages as compared to the control group. R. solani had the highest inhibition percentage of 82.96%. In conclusion, the encouraging structural properties and antimicrobial capabilities of PS-NPs pave the way for their application across diverse technological industries. To the best of our knowledge, this is the first in vitro study of PS-NPs to evaluate their fungal control efficiency.
Antibacterial, antifungal, and phytochemical properties of Salsola kali ethanolic extract
2024, Bashir, Shimaa, Behiry, Said, Al-Askar, Abdulaziz A., Kowalczewski, Przemysław Łukasz, Emaish, Haitham H., Abdelkhalek, Ahmed
Abstract The research into the use of plants as plentiful reservoirs of bioactive chemicals shows significant potential for agricultural uses. This study focused on analyzing the chemical composition and potency of an ethanolic extract obtained from the aerial parts (leaves and stems) of Salsola kali against potato pathogenic fungal and bacterial pathogens. The isolated fungal isolates were unequivocally identified as Fusarium oxysporum and Rhizoctonia solani based on morphological characteristics and internal transcribed spacer genetic sequencing data. The antifungal activity of the extract revealed good inhibition efficacy against R. solani (60.4%) and weak activity against F. oxysporum (11.1%) at a concentration of 5,000 µg/mL. The S. kali extract exhibited strong antibacterial activity, as evidenced by the significant inhibition zone diameter (mm) observed in all three strains of bacteria that were tested: Pectobacterium carotovorum (13.33), Pectobacterium atrosepticum (9.00), and Ralstonia solanacearum (9.33), at a concentration of 10,000 µg/mL. High-performance liquid chromatography analysis revealed the presence of several polyphenolic compounds (μg/g), with gallic acid (2942.8), caffeic acid (2110.2), cinnamic acid (1943.1), and chlorogenic acid (858.4) being the predominant ones. Quercetin and hesperetin were the predominant flavonoid components, with concentrations of 1110.3 and 1059.3 μg/g, respectively. Gas chromatography-mass spectrometry analysis revealed the presence of many bioactive compounds, such as saturated and unsaturated fatty acids, diterpenes, and phytosterols. The most abundant compound detected was n-hexadecanoic acid, which accounted for 28.1%. The results emphasize the potential of S. kali extract as a valuable source of bioactive substances that possess good antifungal and antibacterial effects, which highlights its potential for many agricultural uses.
Torilis arvensis ethanolic extract: Phytochemical analysis, antifungal efficacy, and cytotoxicity properties
2024, Khalil, Abdallah, Abdelwahab, Eman A., Sharaf, Omaima A., Al-Askar, Abdulaziz A., Kowalczewski, Przemysław Łukasz, Abdelkhalek, Ahmed, Behiry, Said
Abstract The aim of the current study is to assess the phytochemical contents, antifungal activity, and cytotoxicity characteristics of an ethanolic extract derived from the entire Torilis arvensis plant. High-performance liquid chromatography examination of the extract revealed that the primary phenolic components were benzoic, o-coumaric, and vanillic acids with concentrations of 259.1, 220.4, and 111.3 µg/g of extract, respectively. The highest flavonoids were catechol (117.9 µg/g) and kaempferol (108.7 µg/g). The extract is notable for its high concentration of long-chain saturated and unsaturated fatty acids, as well as its presence of 17 gas chromatography-mass spectrometry bioactive chemicals. Three soil-borne pathogenic fungi, Rhizoctonia solani, Fusarium solani, and Fusarium oxysporum, were molecularly identified and assessed for the antifungal activity of the extract. The extract showed the highest growth inhibition against R. solani, F. oxysporum, and F. solani at 300 µg/mL, with inhibition rates of 88.9, 71.5, and 67.8%, respectively. T. arvensis treatments were generally non-toxic after proceeding with cytotoxicity assay on the onion root tip cells, with no chromosomal abnormalities detected even at the highest concentration (300 µg/mL). These findings highlight the potential of T. arvensis extract as a safe and effective antifungal agent with a rich phytochemical profile.
Copper oxide–ferric oxide nanocomposite: Synthesis, characterization, and antibacterial and antifungal properties
2024, Elnouby, Mohamed, Nabil, Marwa, Al-Askar, Abdulaziz A., Kowalczewski, Przemysław Łukasz, Behiry, Said, Abdelkhalek, Ahmed
Abstract Recently, copper oxide–ferric oxide nanocomposites (CuO/Fe2O3-NCs) have gained popularity and are widely employed in various applications. However, their effectiveness against phytopathogens has not been studied yet. This study investigates the synthesis and characterization of CuO/Fe2O3-NCs using the hydrothermal technique. X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectroscopy (FTIR) were used to characterize the produced nanocomposite (NC). EDX and TEM analyses revealed the presence of Cu, Fe, and O elements. The NC had a polygonal shape with sides around 12 nm, spherical CuO particles of 7–10 nm, and plate-like Fe2O3. XRD measurements confirmed the crystal and hexagonal structures of CuO and Fe2O3. The XRD patterns of CuO/Fe2O3 showed the characteristic peaks of (−111) and (004) reflections for CuO at 35.69° and 37.73°. The FTIR spectra showed characteristic lines at 525 and 567 cm−1 for the Cu–O bond and Fe–O stretching modes of Fe2O3, respectively. The antifungal activity of CuO/Fe2O3-NCs showed significant growth inhibition of Fusarium oxysporum, Rhizoctonia solani, and Botrytis cinerea by up to 71, 50, and 81%, respectively, at 100 µg/mL. At 50 µg/mL, the antibacterial test revealed inhibition zones of 12.33 mm for Pectobacterium carotovorum, 9.33 mm for Streptomyces scabies, 10.67 mm for Pectobacterium atrosepticum, and 14.67 mm for Ralstonia solanacearum. The results show that CuO/Fe2O3-NCs can efficiently suppress the growth of various fungal and bacterial strains, making them potential antimicrobial agents against phytopathogenic microorganisms.