Phytochemical composition and antifungal effectiveness of Phoenix dactylifera L. rachis extracts
2024, Abdelkhalek, Ahmed, Abdelwahab, Eman A., Elalem, Saad F., Al-Askar, Abdulaziz A., Kowalczewski, Przemysław Łukasz, Behiry, Said
Abstract The present study appraised the inhibitory role of ethanol (PDEE) and ethyl acetate (PDEAE) extracts of Phoenix dactylifera L. against three molecularly identified fungi: Fusarium oxysporum, Botrytis cinerea, and Rhizoctonia solani. HPLC analysis revealed that gallic acid was the major phenolic compound in both extracts: (PDEE: 1721.90 μg/g) and (PDEAE: 101.53 μg/g). The major flavonoids in PDEE are rutin, kaempferol, and quercetin, whereas PDEAE contains kaempferol, naringenin, and quercetin. The GC-MS showed 11-octadecenoic acid methyl ester (26.25%) is the highest compound in PDEE, while diisooctyl phthalate (18.82%) is the most important compound in PDEAE. At 50 μg/mL, the inhibition percentage of PDEAE initiated the highest growth inhibition of F. oxysporum (49.63%) and R. solani (71.43%). Meanwhile, PDEE at 200 μg/mL initiated an inhibition value of 77.78% for B. cinerea. As a result, PDEAE is considered more effective than PDEE in controlling the growth of selected isolates.
Antibacterial, antifungal, and phytochemical properties of Salsola kali ethanolic extract
2024, Bashir, Shimaa, Behiry, Said, Al-Askar, Abdulaziz A., Kowalczewski, Przemysław Łukasz, Emaish, Haitham H., Abdelkhalek, Ahmed
Abstract The research into the use of plants as plentiful reservoirs of bioactive chemicals shows significant potential for agricultural uses. This study focused on analyzing the chemical composition and potency of an ethanolic extract obtained from the aerial parts (leaves and stems) of Salsola kali against potato pathogenic fungal and bacterial pathogens. The isolated fungal isolates were unequivocally identified as Fusarium oxysporum and Rhizoctonia solani based on morphological characteristics and internal transcribed spacer genetic sequencing data. The antifungal activity of the extract revealed good inhibition efficacy against R. solani (60.4%) and weak activity against F. oxysporum (11.1%) at a concentration of 5,000 µg/mL. The S. kali extract exhibited strong antibacterial activity, as evidenced by the significant inhibition zone diameter (mm) observed in all three strains of bacteria that were tested: Pectobacterium carotovorum (13.33), Pectobacterium atrosepticum (9.00), and Ralstonia solanacearum (9.33), at a concentration of 10,000 µg/mL. High-performance liquid chromatography analysis revealed the presence of several polyphenolic compounds (μg/g), with gallic acid (2942.8), caffeic acid (2110.2), cinnamic acid (1943.1), and chlorogenic acid (858.4) being the predominant ones. Quercetin and hesperetin were the predominant flavonoid components, with concentrations of 1110.3 and 1059.3 μg/g, respectively. Gas chromatography-mass spectrometry analysis revealed the presence of many bioactive compounds, such as saturated and unsaturated fatty acids, diterpenes, and phytosterols. The most abundant compound detected was n-hexadecanoic acid, which accounted for 28.1%. The results emphasize the potential of S. kali extract as a valuable source of bioactive substances that possess good antifungal and antibacterial effects, which highlights its potential for many agricultural uses.