Now showing 1 - 3 of 3
No Thumbnail Available
Publication

Homocysteine thiolactone contributes to the prognostic value of fibrin clot structure/function in coronary artery disease

2022, Sikora, Marta, Skrzydlewski, Paweł, Perła-Kaján, Joanna, Jakubowski, Hieronim

Fibrin clot structure/function contributes to cardiovascular disease. We examined sulfur-containing metabolites as determinants of fibrin clot lysis time (CLT) and maximum absorbance (Absmax) in relation to outcomes in coronary artery disease (CAD) patients. Effects of B-vitamin/folate therapy on CLT and Absmax were studied. Plasma samples were collected from 1,952 CAD patients randomized in a 2 x 2 factorial design to (i) folic acid, vitamins B12, B6; (ii) folic acid, vitamin B12; (iii) vitamin B6; (iv) placebo for 3.8 years in the Western Norway B-Vitamin Intervention Trial. Clot lysis time (CLT) and maximum absorbance (Absmax) were determined using a validated turbidimetric assay. Acute myocardial infarction (AMI) and mortality were assessed during a 7-year follow-up. Data were analyzed using bivariate and multiple regression. Survival free of events was studied using Kaplan Mayer plots. Hazard ratios (HR) and 95% confidence intervals (CI) were estimated using Cox proportional hazards models. Baseline urinary homocysteine (uHcy)-thiolactone and plasma cysteine (Cys) were significantly associated with CLT while plasma total Hcy was significantly associated with Absmax, independently of fibrinogen, triglycerides, vitamin E, glomerular filtration rate, body mass index, age, sex plasma creatinine, CRP, HDL-C, ApoA1, and previous diseases. B-vitamins/folate did not affect CLT and Absmax. Kaplan-Meier analysis showed associations of increased baseline CLT and Absmax with worse outcomes. In Cox regression analysis, baseline CLT and Absmax (>cutoff) predicted AMI (CLT: HR 1.58, 95% CI 1.10–2.28; P = 0.013. Absmax: HR 3.22, CI 1.19–8.69; P = 0.021) and mortality (CLT: HR 2.54, 95% CI 1.40–4.63; P = 0.002. Absmax: 2.39, 95% CI 1.17–4.92; P = 0.017). After adjustments for other prognostic biomarkers these associations remained significant. Cys and uHcy-thiolactone, but not tHcy, were significant predictors of AMI in Cox regression models that included CLT. Conclusions uHcy-thiolactone and plasma Cys are novel determinants of CLT, an important predictor of adverse CAD outcomes. CLT and Absmax were not affected by B-vitamin/folate therapy, which could account for the lack of efficacy of such therapy in CAD. Trial registration: URL: http://clinicaltrials.gov. Identifier: NCT00354081.

No Thumbnail Available
Publication

Association of Metallic and Nonmetallic Elements with Fibrin Clot Properties and Ischemic Stroke

2024, Jakubowski, Hieronim, Sikora, Marta, Bretes, Ewa, Perła-Kajan, Joanna, Utyro, Olga, Wojtasz, Izabela, Kaźmierski, Radosław, Frankowski, Marcin, Zioła-Frankowska, Anetta

Objectives—Metallic elements and fibrin clot properties have been linked to stroke. We examined metallic and nonmetallic elements, fibrin clot lysis time (CLT), and maximum absorbance (Absmax) in relation to ischemic stroke. Design—A case–control study of ischemic stroke patients vs. healthy individuals. Subjects and Methods—Plasma and serum were collected from 260 ischemic stroke patients (45.0% women; age, 68 ± 12 years) and 291 healthy controls (59.7% women; age, 50 ± 17 years). Fibrin CLT and Absmax were measured using a validated turbidimetric assay. Serum elements were quantified by inductively coupled plasma mass spectrometry (ICP-MS) and optical emission spectrometry (ICP-OES). Data were analyzed by bivariate correlations and multiple or logistic regression. Results—In female stroke patients, copper, lithium, and aluminum were significantly lower compared with controls; in male stroke patients, potassium was lower, and beryllium was elevated. In female and male stroke patients, iron, zinc, nickel, calcium, magnesium, sodium, and silicon were significantly lower, while strontium was elevated. Positive correlations between fibrin clot properties and metals, observed in healthy controls, were lost in ischemic stroke patients. In multivariate regression analysis, fibrin CLT and/or Absmax was associated with zinc, calcium, potassium, beryllium, and silicon in stroke patients and with sodium, potassium, beryllium, and aluminum in controls. In logistic regression analysis, stroke was independently associated with lithium, nickel, beryllium, strontium, boron, and silicon and with sodium, potassium, calcium, and aluminum but not with fibrin CLT/Absmax. Conclusions—Various elements were associated with fibrin clot properties and the risk of ischemic stroke. Lithium, sodium, calcium, and aluminum abrogated the association of fibrin clot properties with ischemic stroke.

No Thumbnail Available
Publication

Homocysteine thiolactone and other sulfur-containing amino acid metabolites are associated with fibrin clot properties and the risk of ischemic stroke

2024, Sikora, Marta, Bretes, Ewa, Perła-Kaján, Joanna, Utyro, Olga, Borowczyk, Kamila, Piechocka, Justyna, Głowacki, Rafał, Wojtasz, Izabela, Kaźmierski, Radosław, Jakubowski, Hieronim

AbstractHomocysteine (Hcy) and Hcy-thiolactone (HTL) affect fibrin clot properties and are linked to cardiovascular disease. Factors that influence fibrin clot properties and stroke are not fully understood. To study sulfur-containing amino acid metabolites, fibrin clot lysis time (CLT) and maximum absorbance (Absmax) in relation to stroke, we analyzed plasma and urine from 191 stroke patients (45.0% women, age 68 ± 12 years) and 291 healthy individuals (59.7% women, age 50 ± 17 years). Plasma and urinary levels of sulfur-containing amino acid metabolites and fibrin clot properties were significantly different in stroke patients compared to healthy individuals. Fibrin CLT correlated with fibrin Absmax in healthy males (R2 = 0.439, P = 0.000), females (R2 = 0.245, P = 0.000), female stroke patients (R2 = 0.187, P = 0.000), but not in male stroke patients (R2 = 0.008, P = ns). Fibrin CLT correlated with age in healthy females but not males while fibrin Absmax correlated with age in both sexes; these correlations were absent in stroke patients. In multiple regression analysis in stroke patients, plasma (p)CysGly, pMet, and MTHFR A1298C polymorphism were associated with fibrin Absmax, while urinary (u)HTL, uCysGly, and pCysGly were significantly associated with fibrin CLT. In healthy individuals, uHTL and uGSH were significantly associated with fibrin Absmax, while pGSH, and CBS T833C 844ins68 polymorphism were associated with fibrin CLT. In logistic regression, uHTL, uHcy, pCysGly, pGSH, MTHFR C677T polymorphism, and Absmax were independently associated with stroke. Our findings suggest that HTL and other sulfur-containing amino acid metabolites influence fibrin clot properties and the risk of stroke.