Profile of Polyphenols, Fatty Acids, and Terpenes in Henola Hemp Seeds Depending on the Method of Fertilization
2024, Przybylska-Balcerek, Anna, Frankowski, Jakub, Graczyk, Małgorzata, Niedziela, Grażyna, Sieracka, Dominika, Wacławek, Stanisław, Sázavská, Tereza Hulswit, Buśko, Maciej, Szwajkowska-Michałek, Lidia, Stuper-Szablewska, Kinga
Botanical varieties of hemp differ in chemical composition, plant morphology, agronomy, and industrial suitability. Hemp is popular for cultivation for the production of cannabinoid oil, fiber production, biomass, etc. The fertilization process is one of the most important factors affecting the plant, both its condition and chemical composition. So far, research has been carried out proving that hemp is a valuable source of, among others: fatty acids, amino acids, acids, vitamins, numerous micro- and macroelements, and antioxidant compounds. In this experiment, it was decided to check the possibility of harvesting hemp panicles twice in one year. The purpose of this treatment is to use one plant to produce cannabidiol oil and grain. The main aim of the research was to determine bioactive compounds in hemp seeds and to determine whether the cultivation method affects their content and quantity. Based on the research conducted, it was observed that hemp can be grown in two directions at the same time and harvested twice because its health-promoting properties do not lose their value. It was found that regardless of whether hemp is grown solely for seeds or to obtain essential oils and then seeds, the type of fertilization does not affect the content of phenolic acids (e.g., syringic acid: 69.69–75.14 μg/100 g, vanillic acid: 1.47–1.63 μg/100 g). Based on the conducted research, it was found that essential oils can be obtained from one plant in the summer and seeds from Henola hemp cultivation in the autumn, because such a treatment does not affect the content of the discussed compounds.
The Content of Antioxidant Compounds and VOCs in Sorghum Grain Grown in Central and Eastern Europe
2024, Przybylska-Balcerek, Anna, Frankowski, Jakub, Sieracka, Dominika, Sázavská, Tereza, Wacławek, Stanisław, Raczak, Barbara Klaudia, Szwajkowska-Michałek, Lidia, Buśko, Maciej, Graczyk, Małgorzata, Niedziela, Grażyna, Stuper-Szablewska, Kinga
Sorghum is a plant belonging to the Poaceae family. It is drought-resistant and has low soil requirements. In the face of climate change, it is increasingly cultivated in Europe. Poland is a country with great agricultural potential; it is thus important to develop effective and economic methods of agricultural production, which is confirmed by the introduction of sorghum into cultivation. The aim of this study was to characterize the composition of bioactive compounds (i.e., phenolic acids, flavonoids, carotenoids, and phytosterols) and VOCs in sorghum grain of two varieties, i.e., white ‘Sweet Caroline’ and red ‘Sweet Susana’ grown in the temperate climate (Pętkowo, Poland (52°12′40″ N 17°15′31″ E)). The following tests were carried out: analysis of phenolic acids, flavonoids, carotenoids, phytosterols, antioxidant activity (ABTS), free phenolic acids (FPAs); elemental analysis; and water, fat and starch content analysis. Based on the conducted research, it was concluded that Poland has appropriate conditions for growing sorghum, as the content of bioactive (antioxidant) compounds was at a similar level to those grown in tropical and subtropical climates. Of the nine phenolic acids and seven flavonoids determined, the highest concentrations in both sorghum grain varieties were found for ferulic, p-coumaric and protocatechuic acids. The content of ferulic acid was three times higher in Sweet Caroline grains than in Sweet Susana grains. Differences in the content of these compounds may be the result of genetic differences between the Sweet Susana and Sweet Caroline varieties.
Camelina sativa Seeds and Oil as Ingredients in Model Muffins in Order to Enhance Their Health-Promoting Value
2024, Bilska, Agnieszka, Kurasiak-Popowska, Danuta, Szablewski, Tomasz, Radzimirska-Graczyk, Monika, Stuper-Szablewska, Kinga
The aim of this study was to see whether it is possible to add camelina oil and seeds as ingredients in muffins in order to enhance their health-promoting value, such as their bioactive compound content, while maintaining the organoleptic attributes considered desirable by consumers. Camelina oil is characterised by a high linolenic acid content. Four types of muffins were prepared for analysis: MBnO—control muffins (containing 11.85% rapeseed oil), MCsO—muffins containing camelina oil instead of rapeseed oil, MCsS—muffins containing 6.65% camelina seeds in relation to the mass of prepared dough, and MCsOS—muffins containing both camelina oil and camelina seeds. The change in the fatty acid profile in muffins with the addition of camelina oil was significant; however, it was found that, as a result of thermal treatment, lower amounts of saturated fatty acids were formed. Among all the investigated experimental variants, muffins were characterised by the highest contents of all the phenolic acids analysed. The substitution of rapeseed oil with camelina oil had no negative effect on most of the organoleptic attributes of the muffins. Moreover, thanks to a greater content of carotenoids, camelina oil had an advantageous effect on the improvement of product colour, thus improving its overall desirability.
New Insights into Bioactive Compounds of Wild-Growing Medicinal Plants
2023, Salem, Omar, Szwajkowska-Michałek, Lidia, Przybylska-Balcerek, Anna, Szablewski, Tomasz, Cegielska-Radziejewska, Renata, Świerk, Dariusz Andrzej, Stuper-Szablewska, Kinga
Plants contain bioactive substances and secondary metabolites that have a variety of functions, including antibacterial, antioxidant, anti-inflammatory, and anticancer activities. In this study, the content of bioactive compounds in five medicinal plants was determined, i.e., Plantago major L., Armoracia rusticana, Hypericum perforatum L., Rumex acetosa L., and Urtica dioica L., from 38 locations. Additionally, the antimicrobial effect of extracts of bioactive compounds from the above-mentioned plants was checked. The experiment used an original method of extracting bioactive compounds. Purpose of the research: the assessment of antimicrobial activity and chemical characterization of extracts obtained using our own method of isolating bioactive compounds from green parts of medical plants in Poland. Based on the research, the presence of bioactive compounds, i.e., phenolic acids and flavonoids, was found in the tested plant extracts. The results of this study suggest that the geographic parameters of the locations where these plants grow have different effects on their biochemical composition and biological activity. The results showed that all tested plants had significant antibacterial activities. Rumex acetose L. showed the highest antimicrobial activity against Escherichia coli and Salmonella enteritidis. These studies supplement the existing literature on the subject with information about the antimicrobial properties of the tested plant extracts that can be used in herbal medicine. The results have significant implications for the pharmaceutical, nutraceutical, and cosmetic sectors, establishing a foundation for future research in this area.
Selected Metabolites of Biofunctional Importance from Edible Fruits of Forest Shrubs
2025, Przybylska-Balcerek, Anna, Stuper-Szablewska, Kinga
This study focused on determining the content of bioactive compounds in selected fruits of wild shrubs. The plants selected for the study were from the Rosaceae and Adoxaceae families. Particular attention should be paid to the fruits of plants commonly growing in Poland (temperate climate), such as Crataegus monogyna, Sorbus aucuparia, Viburnum opulus, and Sambucus nigra. The study aimed to deepen the knowledge of the content of selected secondary metabolites, such as phenolic acids, flavonoids, flavonoid glycosides, and their antioxidant properties, as well as natural dyes. During this study, chromatographic and spectrophotometric methods were used to determine the quantitative profile of the above-mentioned secondary metabolites of wild plant fruits. The quantitative profile of 16 phenolic acids, 9 flavonoids, 5 organic acids, 13 flavonoid glycosides, and 3 natural dyes was determined. Based on the studies, it was noted that the qualitative and quantitative profile of the bioactive compounds differs not only depending on the species but also on the location where the plant grows. A statistical analysis showed significant differences (p < 0.05) in the content of phenols and flavonoids in fruits collected from different locations. Interestingly, differences were also observed within the species, probably depending on the geographical location and composition of the soil in which the plants were grown.