Harvester Efficiency During Thinning Operations in Alder Planted Stands with Some of Coppice Origin
2025, Rosińska, Martyna, Bembenek, Mariusz, Picchio, Rodolfo, Karaszewski, Zbigniew, Borz, Stelian Alexandru, Mederski, Piotr
In Central European conditions, harvester use becomes more popular for broadleaved tree species, though there are still some difficulties with effective delimbing of satisfactory quality. Considering these issues, economic aspects are ultimately crucial when deciding on the use of harvesters and assessing the effectiveness of their productivity. The objective of the present research was to apply different harvesters in thinning of alder stands to determine their productivity level focusing on the use of tree trunk for logs. The study was carried out in alder stands under thinning where five different harvesters were used in nine stands, five of which were of coppice origin. Additionally, in six cases, harvesting was done after the growing season and in three cases during the growing season, when trees were covered with leaves. An average productivity was 14.42 m3 PMH0-1, with maximum values of 24.34 m3 PMH0-1 in a coppice stand, and 23.66 m3 PMH0-1 in a planted stand. Delimbing was carried out in the tree crowns with the mean diameter as small as 7.9 cm under bark, which shows very good use of the tree trunk for logs. It was also established that the thicker the tree, the bigger the top diameter of the last log, leading to bigger biomass production, e.g. for energy purposes, but also with smaller effectiveness of log processing.
A simulation study of noise exposure in sledge-based cable yarding operations
2024, Borz, Stelian Alexandru, Mederski, Piotr, Bembenek, Mariusz
Ensuring the safety of forestry workers is a key challenge, particularly when working with partly mechanized harvesting systems. Cable yarding is typically used in steep terrain timber harvesting. For long-distance extraction, one of the few alternatives is to use sledge yarders, but these machines may expose workers to high doses of noise. The goal of this study was to model haulers’ exposure to noise in sledge-based cable yarding operations, based on a simulation approach that considered variable factors such as the yarding distance, lateral yarding distance, and average skyline height. Taken into consideration were 165 scenarios developed by examining the variation in yarding distance (500 to 1500 m, with a step of 100 m), lateral yarding distance (10 to 50 m, with a step of 10 m), and average skyline height above the ground (10, 15, and 20 m). The simulations assumed an 8-h working day with a break of 1 h. The models and statistics published by other studies were used to calculate the time consumption and number of work cycles completed within a working day. These data were used to compute the equivalent exposure to noise (LAeq) for each scenario, as well as for those work elements that were likely to expose the haulers to noise the most. The presented findings indicated that (i) the exposure to noise was higher than 100 dB(A), irrespective of variation in the considered factors; (ii) the trend in exposure was characterized by polynomials in relation to the extraction distance, and the magnitude of exposure was consistently affected by variation in the considered factors; and (iii) without hearing protection, the empty and loaded turns exposed workers to noise over the permissible limits. These findings strongly suggest the use of hearing protection when working in close proximity to sledge-based cable yarding operations. The methods proposed in this study in the form of simulation may help benchmark other forest operations.