Now showing 1 - 3 of 3
No Thumbnail Available
Publication

Alternative Wood Raw Material Sources in Particleboard and OSB Production—Challenges and Perspectives

2025, Dukarska, Dorota, Kawalerczyk, Jakub, Sedliačik, Ján, Antov, Petar, Unisa, Mehr

This review examines the potential use of alternative wood raw materials, including fast-growing plantation species, juvenile wood, non-plantation species, and recycled wood, in the production of particleboard (PB) and oriented strand board (OSB). In light of the ongoing challenges faced by the wood-based industry in securing a stable and sustainable supply of raw materials, these alternatives present several advantages, such as cost-effectiveness, greater availability, and reduced reliance on natural forest resources. Fast-growing plantation species and juvenile wood are particularly suited for lightweight applications, while non-plantation species and recycled wood contribute to sustainability goals by lowering environmental impact and promoting resource efficiency. Nonetheless, the successful integration of these materials requires overcoming certain challenges, including variability in their physical and mechanical properties, as well as the need for tailored adhesive systems and processing parameters. This review examines strategies to optimize production processes and enhance the utilization of waste materials while emphasizing the role of alternative raw materials in advancing circular economy principles. The findings highlight the importance of future research to improve material knowledge, technological solutions, and industry practices, thereby supporting the sustainable development of the wood-based materials sector.

No Thumbnail Available
Publication

Modification of Urea-Formaldehyde Resin with Triethylenetetramine: Effect on Adhesive Properties and Plywood Strength

2025, Kawalerczyk, Jakub, Dukarska, Dorota, Góral, Błażej, Antov, Petar, Dziurka, Dorota, Mirski, Radosław

Due to its multiple amino groups, triethylenetetramine (TETA) can be used as an effective formaldehyde scavenger contributing to the reduction in formaldehyde emission from plywood. This study aimed to evaluate the effect of small TETA loadings on the properties of urea-formaldehyde (UF) resin and the performance of the resulting plywood. Adhesive mixtures containing 0%, 0.5%, 1.0%, and 1.5% TETA were prepared and characterized in terms of pH, viscosity, solids content, and gel time. The incorporation of TETA significantly increased adhesive pH and gel time, while viscosity and solid content were not significantly affected. The analysis of formaldehyde content and spectroscopic and thermogravimetric analyses of the cured adhesives showed reduced formaldehyde content, changes in chemical structure, and enhanced thermal stability at lower temperatures but accelerated degradation at higher temperatures. Formaldehyde emission from plywood was reduced; however, bonding quality and mechanical performance decreased with higher TETA content. Nevertheless, the wet shear strength of all variants exceeded 1 N/mm2. Adhesive formulation containing 0.5% TETA was selected as the optimal variant, providing environmental benefits while maintaining satisfactory plywood performance.

No Thumbnail Available
Publication

Activated Carbon from Coconut Shells as a Modifier of Urea–Formaldehyde Resin in Particleboard Production

2024, Kawalerczyk, Jakub, Dukarska, Dorota, Antov, Petar, Stuper-Szablewska, Kinga, Dziurka, Dorota, Mirski, Radosław

Various methods for the effective modification of urea–formaldehyde (UF) adhesives, aimed at enhancing the performance of wood-based materials, have been continually explored worldwide. The aim of this work was to investigate and evaluate the effect of introducing small amounts (0.25–1.5%) of activated carbon from coconut shells (ACCS) in UF adhesive on the properties of particleboard. The performed investigations of the adhesive mixture’s properties showed an increase in both viscosity and reactivity. Moreover, the use of loadings of 0.75% and 1% had a positive effect on mechanical properties such as bending strength, modulus of elasticity, and internal bond. In these variants, a delay in the degradation of the adhesive bonds by water was also observed, as indicated by the lower thickness swelling values measured after 2 h. However, under long-term exposure to water, the modification had no considerable effect on the dimensional stability of the boards. Markedly, the addition of 1 and 1.5% of ACCS resulted in a reduction in formaldehyde content, which can be attributed to the excellent adsorption capacity of activated carbon. Overall, a loading of 1% was found to be optimal, resulting in improved strength, enhanced water resistance, and reduced formaldehyde content.