Now showing 1 - 2 of 2
No Thumbnail Available
Publication

How chrysanthemum (Chrysanthemum × grandiflorum) ‘Palisade White’ deals with long-term salt stress

2022, Bandurska, Hanna, Breś, Włodzimierz, Tomczyk, Agnieszka, Zielezińska, Małgorzata, Borowiak, Klaudia

AbstractSalinity is a serious problem in the cultivation of ornamental plants. Chrysanthemum (Chrysanthemum × grandiflorum) ‘Palisade White’ was evaluated in order to examine its responses to long-term salt stress. Plants were grown in substrate supplemented with NaCl doses (g dm−3 of substrate) 0, 0.44, 0.96, 1.47, 1.98, 2.48 and 2.99. The initial electrical conductivity (EC) of the substrates was 0.3, 0.9, 1.4, 1.9, 2.6, 3.1 and 3.9 dS m−1, respectively. Plant growth, relative water content (RWC), Na, Cl, K, N and P concentrations, membrane injury (MI), chlorophyll and proline levels, as well as gas exchange parameters in leaves of chrysanthemum were determined. A dose-dependent significant reduction of growth and minor decrease of leaf RWC were observed. Foliar Na and Cl concentrations increased with the highest NaCl dose up to 6-fold. However, the concentration of K increased by about 14 %, N by about 5 % but P decreased by about 23 %. Membrane injury was rather low (11 %) even at the highest NaCl dose. Statistically significant decreases of stomatal conductance (20 %), transpiration rate (32 %) and photosynthesis (25 %) were already observed at the lowest NaCl dose and about 40 % decrease of all these parameters with the highest dose. A significant reduction in the intercellular CO2 concentration occurred at the lower NaCl doses and no changes with the highest dose. These results show that in plants grown with the highest NaCl dose, non-stomatal limitation of photosynthesis may occur. According to Maas and Hoffman tolerance assessment (1977) chrysanthemum ‘Palisade White’ may be considered as moderately sensitive to salt stress in terms of growth inhibition. However, it is able to cope with long-term salt stress without any signs of damage, such as chlorophyll depletion, leaf browning or necrotic spots probably due to maintenance of K homeostasis and proline accumulation, which alleviate the toxic effect of chloride.

No Thumbnail Available
Publication

Analysis of Physiological Status in Response to Water Deficit of Spelt (Triticum aestivum ssp. spelta) Cultivars in Reference to Common Wheat (Triticum aestivum ssp. vulgare)

2022, Radzikowska-Kujawska, Dominika, Sulewska, Hanna, Bandurska, Hanna, Ratajczak, Karolina, Szymańska, Grażyna, Kowalczewski, Przemysław Łukasz, Głowicka-Wołoszyn, Romana

Climate change, including decreasing rainfall, makes cultivating cereals more difficult. Drought stress reduces plant growth and most all yields. On the other hand, consumers’ interest in ancient wheat varieties, including spelt, is growing. The aim of this work is to compare the response to drought stress between spelt (Triticum aestivum ssp. spelta) and common wheat (Triticum aestivum ssp. vulgare). Six cultivars of spelt from different European countries and common wheat ‘Bogatka’ as a reference were chosen for research. The photosynthesis process, chlorophyll fluorescence, relative water content, and the content of free proline and anthocyanins in well-watered and drought-stressed plants were measured. It was shown that the spelt cultivars ‘Franckenkorn’ and ‘Badengold’ were much more resistant to water deficit than other cultivars and even common wheat. A slight reduction of CO2 assimilation (by 27%) and no reduction of transpiration rate, with simultaneous intensive proline (eighteen times fold increase) and anthocyanins accumulation (increase by 222%) along with a slight increase in lipid peroxidation level (1.9%) revealed in ‘Franckenkorn’ prove that this cultivar can cope with drought and can be effectively cultivated in areas with limited water abundance.