Now showing 1 - 3 of 3
No Thumbnail Available
Publication

Comparative analysis of nutritional composition and bioactive properties of Chlorella vulgaris and Arthrospira platensis: Implications for functional foods and dietary supplements

2025, Čmiková, Natália, Kowalczewski, Przemysław, Kmiecik, Dominik, Klimowicz, Piotr, Drożdżyńska, Agnieszka, Ślachciński, Mariusz, Królak, Jakub, Matić, Sanja, Marković, Tijana, Popović, Suzana, Baskic, Dejan, Kačániová, Miroslava

Abstract The rising incidence of chronic diseases has spurred interest in functional foods rich in antioxidants and essential nutrients, as well as in exploring their potential cytotoxic activity against cancer cells. This study aims to address this gap by providing a comprehensive comparison of their biochemical composition and bioactive properties, offering insights into their targeted applications in functional foods and supplements. This study investigated the nutritional composition and bioactive properties of two algae species, chlorella (Chlorella vulgaris) and spirulina (Arthrospira platensis). Analysis included total protein content, amino acid profiles, mineral compositions, fatty acid profiles, B vitamin contents, polyphenol profiles, carotenoid contents, antioxidant activities (DPPH˙ and ABTS+ assays), and cytotoxic activities. Chlorella exhibited higher protein content (64.63%) compared to spirulina (58.24%). Spirulina showed higher concentrations of non-essential and essential amino acids, except for methionine. Mineral analysis revealed spirulina’s superiority in calcium, potassium, sodium, iron, manganese, and zinc, whereas chlorella contained higher copper and lead levels. Fatty acid analysis indicated chlorella’s dominance in saturated fatty acids, while spirulina showed higher proportions of monounsaturated and polyunsaturated fatty acids. Polyphenol analysis highlighted chlorella’s higher levels of p-hydroxybenzoic acid, whereas spirulina contained more rutin and catechin. Chlorella also exhibited higher levels of niacin and riboflavin compared to spirulina. Additionally, spirulina extracts, whether ethanolic or hexane-based, demonstrate substantial antioxidant effects, as evidenced by their lower IC50 values in both DPPH˙ and ABTS+ assays relative to chlorella. Overall, spirulina showed superior antioxidant effect. Chlorella hexane extract showed slightly higher cytotoxic potential compared to spirulina. These findings enhance our understanding of the nutritional and health-promoting properties of chlorella and spirulina, suggesting their potential applications in functional foods and dietary supplements. While in vitro assays indicate promising bioactivity, future studies should include in vivo experiments to confirm the health benefits and functional applications of these microalgae.

No Thumbnail Available
Publication

Hermetia illucens frass improves the physiological state of basil (Ocimum basilicum L.) and its nutritional value under drought

2023, Radzikowska-Kujawska, Dominika, Sawinska, Zuzanna, Grzanka, Monika, Kowalczewski, Przemysław Łukasz, Sobiech, Łukasz, Świtek, Stanisław, Skrzypczak, Grzegorz Antoni, Drożdżyńska, Agnieszka, Ślachciński, Mariusz, Nowicki, Marcin

To counterbalance the growing human population and its increasing demands from the ecosystem, and the impacts on it, new strategies are needed. Use of organic fertilizers boosted the agricultural production, but further increased the ecological burden posed by this indispensable activity. One possible solution to this conundrum is the development and application of more environmentally neutral biofertilizers. The aim of this study was to compare the effectiveness of two doses of Hermetia illucens frass (HI frass) with the commercial cattle manure in the cultivation of basil under drought. Soil without the addition of any organic fertilizer was used as a baseline control substrate for basil cultivation. Plants were grown with cattle manure (10 g/L of the pot volume) or HI frass at two doses (10 and 12.5 g/L). The health and physiological condition of plants were assessed based on the photosynthetic activity and the efficiency of photosystem II (chlorophyll fluorescence). Gas exchange between soil and the atmosphere were also assessed to verify the effect of fertilizer on soil condition. In addition, the mineral profile of basil and its antioxidant activity were assessed, along with the determination of the main polyphenolic compounds content. Biofertilizers improved the fresh mass yield and physiological condition of plants, both under optimal watering and drought, in comparison with the non-fertilized controls. Use of cattle manure in both water regimes resulted in a comparably lower yield and a stronger physiological response to drought. As a result, using HI frass is a superior strategy to boost output and reduce the effects of drought on basil production.

No Thumbnail Available
Publication

Characterization of Selected Microalgae Species as Potential Sources of Nutrients and Antioxidants

2024, Čmiková, Natália, Kowalczewski, Przemysław Łukasz, Kmiecik, Dominik, Tomczak, Aneta, Drożdżyńska, Agnieszka, Ślachciński, Mariusz, Królak, Jakub, Kačániová, Miroslava

Microalgae are exceptional organisms from a nutritional perspective, boasting an array of bioactive compounds that have long justified their incorporation into human diets. In this study, we explored the potential of five microalgae species: Nannochloropsis sp., Tetraselmis chuii, Chaetoceros muelleri, Thalassiosira weissflogii, and Tisochrysis lutea. We conducted comprehensive analyses of their nutritional profiles, encompassing protein content, individual amino acid composition, mineral and trace element levels, fatty acid profiles (including saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), and polyunsaturated fatty acids (PUFAs)), polyphenol compositions, and vitamin B content. The antioxidant activity of the ethanolic extracts was evaluated using two methods: ABTS and DPPH radical scavenging assay. The total protein content of the microalgae ranged from 34.09 ± 0.39% to 42.45 ± 0.18%, with the highest concentration observed in T. weissflogii. Essential amino acids such as histidine, threonine, lysine, valine, isoleucine, leucine, phenylalanine, and methionine were present in concentrations ranging from 0.53 ± 0.02 to 12.55 ± 2.21 g/16 g N. Glutamic acid emerged as the most abundant amino acid, with concentrations ranging from 6.73 ± 0.82 to 12.55 ± 2.21 g/16 g N. Among the microalgae species, T. chuii exhibited the highest concentrations of calcium (Ca) and manganese (Mn), while C. muelleri showed prominence in magnesium (Mg), sodium (Na), and iron (Fe). T. weissflogii stood out for its potassium (K) content, and T. lutea contained notable amounts of copper (Cu), zinc (Zn), and lead (Pb). Regarding fatty acid profiles, Nannochloropsis sp. and T. chuii were predominantly composed of SFA, while C. muelleri and T. weissflogii were rich in MUFA. PUFAs dominated the fatty acid profile of T. lutea, which also exhibited the most diverse range of polyphenolic substances. We also analyzed the B vitamin content, with T. lutea displaying the highest concentrations of niacin (B3) and riboflavin (B2). Antioxidant activity was confirmed for all microalgae tested using DPPH and ABTS radical IC50 (mg/mL) converted to Trolox equivalent (TEAC). These findings underscore the substantial potential of the examined microalgae species as sources of biologically valuable substances characterized by rapid growth and relatively undemanding cultivation conditions.