Now showing 1 - 2 of 2
No Thumbnail Available
Publication

Characterization of Selected Microalgae Species as Potential Sources of Nutrients and Antioxidants

2024, Čmiková, Natália, Kowalczewski, Przemysław Łukasz, Kmiecik, Dominik, Tomczak, Aneta, Drożdżyńska, Agnieszka, Ślachciński, Mariusz, Królak, Jakub, Kačániová, Miroslava

Microalgae are exceptional organisms from a nutritional perspective, boasting an array of bioactive compounds that have long justified their incorporation into human diets. In this study, we explored the potential of five microalgae species: Nannochloropsis sp., Tetraselmis chuii, Chaetoceros muelleri, Thalassiosira weissflogii, and Tisochrysis lutea. We conducted comprehensive analyses of their nutritional profiles, encompassing protein content, individual amino acid composition, mineral and trace element levels, fatty acid profiles (including saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), and polyunsaturated fatty acids (PUFAs)), polyphenol compositions, and vitamin B content. The antioxidant activity of the ethanolic extracts was evaluated using two methods: ABTS and DPPH radical scavenging assay. The total protein content of the microalgae ranged from 34.09 ± 0.39% to 42.45 ± 0.18%, with the highest concentration observed in T. weissflogii. Essential amino acids such as histidine, threonine, lysine, valine, isoleucine, leucine, phenylalanine, and methionine were present in concentrations ranging from 0.53 ± 0.02 to 12.55 ± 2.21 g/16 g N. Glutamic acid emerged as the most abundant amino acid, with concentrations ranging from 6.73 ± 0.82 to 12.55 ± 2.21 g/16 g N. Among the microalgae species, T. chuii exhibited the highest concentrations of calcium (Ca) and manganese (Mn), while C. muelleri showed prominence in magnesium (Mg), sodium (Na), and iron (Fe). T. weissflogii stood out for its potassium (K) content, and T. lutea contained notable amounts of copper (Cu), zinc (Zn), and lead (Pb). Regarding fatty acid profiles, Nannochloropsis sp. and T. chuii were predominantly composed of SFA, while C. muelleri and T. weissflogii were rich in MUFA. PUFAs dominated the fatty acid profile of T. lutea, which also exhibited the most diverse range of polyphenolic substances. We also analyzed the B vitamin content, with T. lutea displaying the highest concentrations of niacin (B3) and riboflavin (B2). Antioxidant activity was confirmed for all microalgae tested using DPPH and ABTS radical IC50 (mg/mL) converted to Trolox equivalent (TEAC). These findings underscore the substantial potential of the examined microalgae species as sources of biologically valuable substances characterized by rapid growth and relatively undemanding cultivation conditions.

No Thumbnail Available
Publication

Seaweed Nutritional Value and Bioactive Properties: Insights from Ascophyllum nodosum, Palmaria palmata, and Chondrus crispus

2024, Čmiková, Natália, Kowalczewski, Przemysław Łukasz, Kmiecik, Dominik, Tomczak, Aneta, Drożdżyńska, Agnieszka, Ślachciński, Mariusz, Szala, Łukasz, Matić, Sanja, Marković, Tijana, Popović, Suzana, Baskic, Dejan, Kačániová, Miroslava

This study investigates the nutritional composition and bioactive properties of Palmaria palmata (dulse), Ascophyllum nodosum (knotted wrack), and Chondrus crispus (Irish moss). Understanding the nutritional values of these seaweeds is very important due to their potential health benefits, especially their antioxidant properties and cytotoxic activities, which point to their ability to inhibit cancer cell proliferation. Comprehensive analyses were conducted to assess protein content, amino acid composition, mineral profile, fatty acids, polyphenols, total carotenoids, antioxidant activity, and cytotoxicity against cervical (HeLa), and colon (HCT-116) cell lines. P. palmata exhibited the highest protein content, while C. crispus was richest in calcium, iron, manganese, and zinc. Amino acid analysis revealed C. crispus as being particularly high in essential and non-essential amino acids, including alanine, glutamic acid, and glycine. A. nodosum and C. crispus were rich in polyunsaturated fatty acids (PUFAs), notably eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). A. nodosum showed the highest total carotenoid content. Polyphenol analysis highlighted the presence of compounds such as p-coumaric acid, gallic acid, and p-hydroxybenzoic acid across the species. Both the ethanolic and hexane A. nodosum extracts demonstrated the strongest antioxidant potential in DPPH• and ABTS+ assays. The cytotoxicity evaluation revealed high anticancer activity of A. nodosum and C. crispus hexane extract against HeLa and HCT-116, though it employed cell cycle arrest and apoptosis. A. nodosum hexane extract exhibited moderate selective anticancer activity against HCT-116. These findings underscore the nutritional diversity and potential health benefits of these macroalgae (seaweed) species, suggesting their suitability as functional foods or supplements, offering diverse nutritional and therapeutic benefits.