The Effects of Neuropeptide B on Proliferation and Differentiation of Porcine White Preadipocytes into Mature Adipocytes
2023, Wojciechowicz, Tatiana, Kołodziejski, Paweł, Billert, Maria, Strowski, Mathias Z., Nowak, Krzysztof W., Skrzypski, Marek
Neuropeptide B (NPB) affects energy homeostasis and metabolism by binding and activating NPBWR1 and NPBWR2 in humans and pigs. Recently, we reported that NPB promotes the adipogenesis of rat white and brown preadipocytes as well as 3T3-L1 cells. In the present study, we evaluated the effects of NPB on the proliferation and differentiation of white porcine preadipocytes into mature adipocytes. We identified the presence of NPB, NPBWR1, and NPBWR2 on the mRNA and protein levels in porcine white preadipocytes. During the differentiation process, NPB increased the mRNA expression of PPARγ, C/EBPβ, C/EBPα, PPARγ, and C/EBPβ protein production in porcine preadipocytes. Furthermore, NPB stimulated lipid accumulation in porcine preadipocytes. Moreover, NPB promoted the phosphorylation of the p38 kinase in porcine preadipocytes, but failed to induce ERK1/2 phosphorylation. NPB failed to stimulate the expression of C/EBPβ in the presence of the p38 inhibitor. Taken together, we report that NPB promotes the differentiation of porcine preadipocytes via a p38-dependent mechanism.
Neuronostatin regulates proliferation and differentiation of rat brown primary preadipocytes
2024, Krążek, Małgorzata, Wojciechowicz, Tatiana, Strowski, Mathias Z., Nowak, Krzysztof W., Skrzypski, Marek
AbstractHigh variations in juvenile wood properties in the radial direction and its worse performance than mature wood make it less suitable for some applications and often treated as waste material. This study aimed to assess how thermal modification affects the chemical composition and the physical, mechanical and swelling properties of Scots pine juvenile and mature wood. An additional goal was to evaluate if the modification can equalise the differences in selected properties of juvenile wood to those of mature wood so that from waste material, juvenile wood can become a fully-fledged raw material for various industrial applications. Thermal treatment at 220 °C influenced wood chemical composition, degrading mainly hemicelluloses but also affecting cellulose and lignin, which resulted in a reduction of hydroxyls and carbonyl/carboxyl groups. These changes were more pronounced for mature than juvenile wood. It reduced mass loss and swelling rate, and increased swelling pressure in the tangential and radial directions to a higher degree for juvenile than mature wood. Changes in mechanical properties in compression were statistically significant only for mature wood, while wood hardness remained unaffected. Although the applied heat treatment improved the performance of juvenile wood by reducing its swelling rate, it did not equalise the examined properties between juvenile and mature wood. Since higher juvenile wood proportion is expected in the wood supply from the future intensively managed forests, there is still a need to find suitable modification methods or better processing techniques so that instead of being thrown away as waste, it could be used broadly in various industrial applications.
Neuropeptide B promotes differentiation of rodent white preadipocytes into mature adipocytes
2023, Wojciechowicz, Tatiana, Szczepankiewicz, Dawid, Strowski, M.Z., Nowak, Krzysztof W., Skrzypski, Marek