Three Environments, One Problem: Forecasting Water Temperature in Central Europe in Response to Climate Change
2025, Ptak, Mariusz, Sojka, Mariusz, Szyga-Pluta, Katarzyna, Amnuaylojaroen, Teerachai
Water temperature is a fundamental parameter influencing a range of biotic and abiotic processes occurring within various components of the hydrosphere. This study presents a multi-step, data-driven predictive modeling framework to estimate water temperatures for the period 2021–2100 in three aquatic environments in Central Europe: the Odra River, the Szczecin Lagoon, and the Baltic Sea. The framework integrates Bayesian Model Averaging (BMA), Random Sample Consensus (RANSAC) regression, Gradient Boosting Regressor (GBR), and Random Forest (RF) machine learning models. To assess the performance of the models, the coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) were used. The results showed that the application of statistical downscaling methods improved the prediction of air temperatures with respect to the BMA. Moreover, the RF method was used to predict water temperature. The best model performance was obtained for the Baltic Sea and the lowest for the Odra River. Under the SSP2-4.5 and SSP5-8.5 scenario-based simulations, projected air temperature increases in the period 2021–2100 could range from 1.5 °C to 1.7 °C and 4.7 to 5.1 °C. In contrast, the increase in water temperatures by 2100 will be between 1.2 °C and 1.6 °C (SSP2-4.5 scenario) and between 3.5 °C and 4.9 °C (SSP5-8.5).
How Useful Are Moderate Resolution Imaging Spectroradiometer Observations for Inland Water Temperature Monitoring and Warming Trend Assessment in Temperate Lakes in Poland?
2024, Sojka, Mariusz, Ptak, Mariusz, Szyga-Pluta, Katarzyna, Zhu, Senlin
Continuous software development and widespread access to satellite imagery allow for obtaining increasingly accurate data on the natural environment. They play an important role in hydrosphere research, and one of the most frequently addressed issues in the era of climate change is the thermal dynamics of its components. Interesting research opportunities in this area are provided by the utilization of data obtained from the moderate resolution imaging spectroradiometer (MODIS). These data have been collected for over two decades and have already been used to study water temperature in lakes. In the case of Poland, there is a long history of studying the thermal regime of lakes based on in situ observations, but so far, MODIS data have not been used in these studies. In this study, the available products, such as 1-day and 8-day MODIS land surface temperature (LST), were validated. The obtained data were compared with in situ measurements, and the reliability of using these data to estimate long-term thermal changes in lake waters was also assessed. The analysis was conducted based on the example of two coastal lakes located in Poland. The results of 1-day LST MODIS generally showed a good fit compared to in situ measurements (average RMSE 1.9 °C). However, the analysis of long-term trends of water temperature changes revealed diverse results compared to such an approach based on field measurements. This situation is a result of the limited number of satellite data, which is dictated by environmental factors associated with high cloud cover reaching 60% during the analysis period.
Utilizing Multi-Source Datasets for the Reconstruction and Prediction of Water Temperature in Lake Miedwie (Poland)
2024, Ptak, Mariusz, Zhu, Senlin, Amnuaylojaroen, Teerachai, Li, Huan, Szyga-Pluta, Katarzyna, Jiang, Sun, Wang, Li, Sojka, Mariusz
Water temperature is a fundamental parameter of aquatic ecosystems. It directly influences most processes occurring within them. Hence, knowledge of this parameter’s behavior, based on long-term (reliable) observations, is crucial. Gaps in these observations can be filled using contemporary methodological solutions. Difficulties in reconstructing water temperature arise from the selection of an appropriate methodology, and overcoming them involves the proper selection of input data and choosing the optimal modeling approach. This study employed the air2water model and Landsat satellite imagery to reconstruct the water temperature of Lake Miedwie (the fifth largest in Poland), for which field observations conducted by the Institute of Meteorology and Water Management—National Research Institute ended in the late 1980s. The approach based on satellite images in this case yielded less accurate results than model analyses. However, it is important to emphasize the advantage of satellite images over point measurements in the spatial interpretation of lake thermal conditions. In the studied case, due to the lake’s shape, the surface water layer showed no significant thermal contrasts. Based on the model data, long-term changes in water temperature were determined, which historically (1972–2023) amounted to 0.20 °C per decade. According to the adopted climate change scenarios by the end of the 21st century (SSP245 and SSP585), the average annual water temperature will be higher by 1.8 °C and 3.2 °C, respectively. It should be emphasized that the current and simulated changes are unfavorable, especially considering the impact of temperature on water quality. From an economic perspective, Lake Miedwie serves as a reservoir of drinking water, and changes in the thermal regime should be considered in the management of this ecosystem.
Long-term trends in water level fluctuations in lowland lakes in central Europe (Northern Poland)
2025, Ptak, Mariusz, Szyga-Pluta, Katarzyna, Sojka, Mariusz