Less and thinner ice: seven decades of change in the ice cover of temperate lakes (Central Europe, Poland)
2025, Zhu, Yuting, Ptak, Mariusz, Dong, Wentao, Sun, Jiang, Xu, Renyi, Zhu, Senlin, Sojka, Mariusz
150-year daily data (1870–2021) in lakes and rivers reveals intensifying surface water warming and heatwaves in the Pannonian Ecoregion (Hungary)
2024, Li, Huan, Sun, Jiang, Zhou, Quan, Sojka, Mariusz, Ptak, Mariusz, Luo, Yi, Wu, Sirui, Zhu, Senlin, Tóth, Viktor R.
Three Environments, One Problem: Forecasting Water Temperature in Central Europe in Response to Climate Change
2025, Ptak, Mariusz, Sojka, Mariusz, Szyga-Pluta, Katarzyna, Amnuaylojaroen, Teerachai
Water temperature is a fundamental parameter influencing a range of biotic and abiotic processes occurring within various components of the hydrosphere. This study presents a multi-step, data-driven predictive modeling framework to estimate water temperatures for the period 2021–2100 in three aquatic environments in Central Europe: the Odra River, the Szczecin Lagoon, and the Baltic Sea. The framework integrates Bayesian Model Averaging (BMA), Random Sample Consensus (RANSAC) regression, Gradient Boosting Regressor (GBR), and Random Forest (RF) machine learning models. To assess the performance of the models, the coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) were used. The results showed that the application of statistical downscaling methods improved the prediction of air temperatures with respect to the BMA. Moreover, the RF method was used to predict water temperature. The best model performance was obtained for the Baltic Sea and the lowest for the Odra River. Under the SSP2-4.5 and SSP5-8.5 scenario-based simulations, projected air temperature increases in the period 2021–2100 could range from 1.5 °C to 1.7 °C and 4.7 to 5.1 °C. In contrast, the increase in water temperatures by 2100 will be between 1.2 °C and 1.6 °C (SSP2-4.5 scenario) and between 3.5 °C and 4.9 °C (SSP5-8.5).
Utilizing Multi-Source Datasets for the Reconstruction and Prediction of Water Temperature in Lake Miedwie (Poland)
2024, Ptak, Mariusz, Zhu, Senlin, Amnuaylojaroen, Teerachai, Li, Huan, Szyga-Pluta, Katarzyna, Jiang, Sun, Wang, Li, Sojka, Mariusz
Water temperature is a fundamental parameter of aquatic ecosystems. It directly influences most processes occurring within them. Hence, knowledge of this parameter’s behavior, based on long-term (reliable) observations, is crucial. Gaps in these observations can be filled using contemporary methodological solutions. Difficulties in reconstructing water temperature arise from the selection of an appropriate methodology, and overcoming them involves the proper selection of input data and choosing the optimal modeling approach. This study employed the air2water model and Landsat satellite imagery to reconstruct the water temperature of Lake Miedwie (the fifth largest in Poland), for which field observations conducted by the Institute of Meteorology and Water Management—National Research Institute ended in the late 1980s. The approach based on satellite images in this case yielded less accurate results than model analyses. However, it is important to emphasize the advantage of satellite images over point measurements in the spatial interpretation of lake thermal conditions. In the studied case, due to the lake’s shape, the surface water layer showed no significant thermal contrasts. Based on the model data, long-term changes in water temperature were determined, which historically (1972–2023) amounted to 0.20 °C per decade. According to the adopted climate change scenarios by the end of the 21st century (SSP245 and SSP585), the average annual water temperature will be higher by 1.8 °C and 3.2 °C, respectively. It should be emphasized that the current and simulated changes are unfavorable, especially considering the impact of temperature on water quality. From an economic perspective, Lake Miedwie serves as a reservoir of drinking water, and changes in the thermal regime should be considered in the management of this ecosystem.
How Climate Change Affects River and Lake Water Temperature in Central-West Poland—A Case Study of the Warta River Catchment
2023, Gizińska, Joanna, Sojka, Mariusz
Climate change has a significant impact on the abiotic and biotic environment. An increase in air temperatures translates into higher temperatures of water constituting the habitat of a wide range of species. The purpose of this study is to present the direction and extent of water temperature increases in eight rivers and three lakes on a monthly and annual basis. The analysis of river water temperatures used both measured data and data reconstructed using artificial neural networks from the period of 1984–2020. The analysis of the direction and extent of changes in air and water temperatures was performed using Mann-Kandall tests and a modified Sen test. The analysis of water temperature changes was conducted against the background of climatic conditions and catchment characteristics. The results indicate that in the Warta River basin in the period of 1984–2020, the average annual temperature rise reached 0.51 °C decade−1, ranging from 0.43 to 0.61 °C decade−1. This translated into an increase in mean annual water temperatures in lakes in a range from 0.14 to 0.58 °C decade−1, and for rivers in a range from 0.10 to 0.54 °C decade−1. The greatest changes in air temperature occurred in April, June, August, September, and November. It was reflected in an increase in water temperature in lakes and rivers. However, these changes did not occur in all rivers and lakes, suggesting the role of local factors that modify the effect of climate change. The study showed that the extent of air temperature changes was significantly higher than the extent of water temperature changes in rivers.
Are Agroecosystem Services Under Threat? Examining the Influence of Climate Externalities on Ecosystem Stability
2024, Olowoyeye, Temidayo, Abegunrin, Gideon, Sojka, Mariusz
This study examines the impacts of climate-induced externalities on the stability of agroecosystems and the ecosystem services they provide. Using the PRISMA approach, we review literature published from 2015 to 2024. The study identifies how extreme weather events such as droughts, floods, heatwaves, and altered precipitation patterns disrupt the provisioning, regulating, and supporting services critical to food security, soil fertility, water purification, and biodiversity. Our findings show a continued increase in climate extremes, raising concerns about food security, environmental resilience, and socio-economic stability. It also reveals that regions dependent on rain-fed agriculture, such as parts of Africa, Asia, and the Mediterranean, are particularly vulnerable to these stressors. Adaptation strategies, including conservation agriculture, crop diversification, agroforestry, and improved water management, are identified as crucial for mitigating these impacts. This study emphasises the importance of proactive, policy-driven approaches to foster climate resilience, support agroecosystem productivity, and secure ecosystem services critical to human well-being and environmental health.
Historical and Future Changes in Water Temperature in the Pilica River (Central Europe) in Response to Global Warming
2024, Ptak, Mariusz, Amnuaylojaroen, Teerachai, Sojka, Mariusz
This study analyzes changes in the water temperature in the Pilica River (Poland), encompassing both historical data (1958–2023) and projections extending to the year 2100. We use multi-model ensembles (MMEs) with Bayesian Model Averaging (BMA) to integrate various Global Climate Model (GCM) datasets for current and projected climate data. Additionally, a Random Forest (RF) machine learning method is applied to project future water temperatures in the Pilica River. It has been demonstrated that over a period of more than sixty years, the average annual water temperature has increased by nearly 2 °C. Further changes are expected to continue in a similar direction with a gradual rise in this parameter, reaching a temperature increase of 3 °C by the end of the 21st century (SSP585). In the distant future, with average monthly water temperature changes at the Przedbórz station ranging from 0.27 °C to 0.87 °C·decade−1 and at the Białobrzegi station from 0.22 °C to 1.06 °C·decade−1. The results of these changes are concerning, especially considering the crucial role of water temperature in shaping seasonality and the dynamics of processes occurring within the river. In the context of the sustainability of the river itself, but also of the entire catchment area, strategies developed by relevant public administration bodies are needed to mitigate the impacts of global warming observed in the thermal regime of the Pilica River.