Chicory modulates the rumen environment in lambs with endoparasites
2025, Petrič, Daniel, Leško, Matej, Demčáková, Klára, Komáromyová, Michaela, Ślusarczyk, Sylwester, Krauze, Izabela, Łukomska, Anna, Pawlak, Piotr, Sidoruk, Pola, Cieślak, Adam, Várady, Marián, Váradyová, Zora
Effect of IVM media supplementation with a blend of n6/n3 fatty acids on the quality of bovine oocytes and blastocysts
2025, Fakruzzaman, Md., Warzych-Plejer, Ewelina, Pawlak, Piotr, Madeja, Zofia E., Cieślak, Adam, Szkudelska, Katarzyna, Lechtanska, Joanna, Lechniak, Dorota
Impact of multi-species swards on in vitro digestibility and methane production
2025, Oreskovic, Matej, Golińska, Barbara, Sidoruk, Pola, Cieślak, Adam, Goliński, Piotr, Barker, Zoe E., Crotty, Felicity V., Goatman, Thomas P., Marley, Christina L., Pattinson, Sandra E., Reynolds, Reynolds K.
Effects of raw and fermented rapeseed cake on ruminal fermentation, methane emission, and milk production in lactating dairy cows
2023, Gao, Min, Cieślak, Adam, Huang, Haihao, Gogulski, Maciej, Petrič, Daniel, Ruska, Diāna, Patra, Amlan Kumar, El-Sherbiny, Mohamed, Szumacher, Małgorzata
Impact of Some Forage Species Derived from Egyptian Rangelands on Rumen Fluid Parameters and Methane Production: In Vitro
2023, S. Abbas, Mohamed, Mahmoud, Adel E.M., Mohamed, Hemat S., Cieślak, Adam, Szumacher, Małgorzata
Changes in Growth and Metabolic Profile of Scutellaria baicalensis Georgi in Response to Sodium Chloride
2024, Ślusarczyk, Sylwester, Grzelka, Kajetan, Jaśpińska, Joanna, Pawlikowska-Bartosz, Anna, Pecio, Łukasz, Stafiniak, Marta, Rahimmalek, Mehdi, Słupski, Wojciech, Cieślak, Adam, Matkowski, Adam
Scutellaria baicalensis Georgi is a valuable medicinal plant of the Lamiaceae family. Its roots have been used in Traditional Chinese Medicine (under the name Huang-qin) since antiquity and are nowadays included in Chinese and European Pharmacopoeias. It is abundant in bioactive compounds which constitute up to 20% of dried root mass. These substances are lipophilic flavones with unsubstituted B-ring, baicalein, and wogonin and their respective glucuronides–baicalin and wogonoside being the most abundant. The content of these compounds is variable and the environmental factors causing this remain partially unknown. The role of these compounds in stress response is still being investigated and in our efforts to measure the effect of NaCl treatment on S. baicalensis growth and metabolic profile, we hope to contribute to this research. Short-term exposure to salt stress (50, 100, and 150 mM NaCl) resulted in a marked increase of baicalein from 1.55 mg to 2.55 mg/g DM (1.6-fold), baicalin from 8.2 mg to 14.7 mg (1.8-fold), wogonin from 4.9 to 6.8 (1.4-fold), and wogonoside from 3.3 to 6.8 mg/g DM (2-fold) in the roots. Conversely, in the aerial parts, the content of individual major flavonoids: carthamidine-7-O-glucuronide and scutellarein-7-O-glucuronide decreased the most by 10–50% from 18.6 mg to 11.3 mg/g (1.6-fold less) and from 6.5 mg to 3.4 mg/g DM (0.52-fold less), respectively. The amino acid profile was also altered with an increase in root concentrations of the following amino acids: arginine from 0.19 to 0.33 mg/g (1.7-fold), glutamate from 0.09 to 0.16 mg/g DM (1.6-fold), alanine from 0.009 to 0.06 mg/g (6.8-fold), proline from 0.011 to 0.029 (2.4-fold) and lysine from 0.016 to 0.063 mg/g (3.9-fold). Aspartate concentration decreased from 0.01 to 0.002 mg/g (4.8-fold less) at 150 mM NaCl. In the aerial parts, the concentration and variation in levels of specific amino acids differed among groups. For instance, the glutamate content exhibited a significant increase exclusively in the treatment group, rising from 0.031 to 0.034 mg/g, representing a 1.2-fold increase. Proline concentration showed a marked increase across all treated groups with the highest from 0.011 to 0.11 mg/g (10-fold). In conclusion, moderate salt stress was shown to increase S. baicalensis root biomass and flavonoid content which is rarely observed in a glycophyte species and provides a foundation for further studies on the mechanisms of osmotic stress adaptation on the specialized metabolism level.
Effect of Feeding Dried Apple Pomace on Ruminal Fermentation, Methane Emission, and Biohydrogenation of Unsaturated Fatty Acids in Dairy Cows
2023, Gadulrab, Khaled, Sidoruk, Pola, Kozłowska, Martyna, Szumacher, Małgorzata, Lechniak, Dorota, Kołodziejski, Paweł Antoni, Pytlewski, Jarosław, Strzałkowska, Nina, Horbańczuk, Jarosław Olav, Jóźwik, Artur, Yanza, Yulianri Rizki, Irawan, Agung, Patra, Amlan Kumar, Cieślak, Adam
Industrial fruit by-products are now being utilized as animal feeds for several reasons. They may substitute the conventional cereal feeds, and also offer economic and environmental benefits. One of the most important industrial fruit by-products is apple pomace, which can be used as a source of energy in the ration of ruminant species, including dairy cattle. The aim of the present study was to evaluate the effect of feeding dried apple pomace to dairy cattle on ruminal fermentation, fatty acid concentration, microbial populations, and methane production. The experiment lasted 64 days and was conducted with 4 cannulated commercial dairy cows. The control animals received a standard diet, while the experimental animals was fed a standard diet supplemented with 150 g/kg DM dried apple pomace. Ruminal fluid samples were collected at three different time intervals. The samples were obtained at 0-, 3-, and 6-h post-feeding. The ruminal fluid was used to assess the ammonia concentration, pH, volatile fatty acids (VFA), long-chain fatty acids (FA), microbial population. A number of ruminal fermentation variables changed as a result of the addition of dried apple pomace to the standard diet. Ruminal pH slightly increased (p < 0.01) while the ammonia concentration decreased (p < 0.01) by 46%. There was a significant decrease in total protozoa count (p < 0.01) and an increase (p < 0.01) in total volatile fatty acids. In addition, there was a decline in methane emission (p = 0.05) by 8% due to dried apple pomace feeding. To sum up, this study demonstrated a positive effect of 150 g/kg DM dietary dried apple pomace on ruminal metabolism including a decrease in ammonia concentration and methane emissions, alongside with an increase in total ruminal VFAs, higher nutrient digestibility, and milk production. Also, beneficial changes to the ruminal fatty acid profile resulting from reduced biohydrogenation were observed although a decreased content of the C18:2 cis 9 trans 11 isomer was also noticed. The dietary inclusion of DAP can serve as a valuable, sustainable, and environmentally friendly dietary component for dairy cows.
Leverage of Essential Oils on Faeces-Based Methane and Biogas Production in Dairy Cows
2023, Mazurkiewicz, Jakub, Sidoruk, Pola, Dach, Jacek, Szumacher, Małgorzata, Lechniak, Dorota, Galama, Paul, Kuipers, Abele, Antkowiak, Ireneusz Ryszard, Cieślak, Adam
Currently, there is an ongoing intensive search for solutions that would effectively reduce greenhouse gas emissions (mainly methane) into the environment. From a practical point of view, it is important to reduce methane emissions from cows in such a way as to simultaneously trim emissions from the digestive system and increase its potential production from feces, which is intended as a substrate used in biogas plants. Such a solution would not only lower animal-based methane emissions but would also enable the production of fuel (in chemical form) with a high yield of methane from biogas, which would boost the economic benefits and reduce the use of fossil fuels. We tested the effect of administering an essential oil blend consisting of 5.5% oils and fats on methane and biogas production from dairy cow feces during fermentation. Three subsequent series (control and experimental) were conducted in dairy cows fed a total mixed ration (TMR) rich in brewer’s cereals and beet pulp, with 20% dry matter (DM) of the total diet. Cows from the experimental group received 20 g/cow/day of essential oil blend, namely a commercial additive (CA). The study showed that CA can increase the production of methane and biogas from dairy cow feces. It can be concluded that in the experimental groups, approx. 15.2% and 14.4% on a fresh matter basis and 11.7% and 10.9% on a dry matter basis more methane and biogas were generated compared to the control group, respectively. Therefore, it can be assumed that the use of CA in cow nutrition improved dietary digestibility, which increased the efficiency of the use of feces organic matter for biogas production.
Meta-analysis of the effects of dietary sources of selenium on lactational performance and oxidative status of dairy cows
2023, Respati, Adib N., Yanza, Yulianri R., Yano, Aan A., Astuti, Dian, Ningsih, Niati, Purnamayanti, Lailatul, Gading, Besse M.W.T., Wardani, Wira W., Jayanegara, Anuraga, Cieślak, Adam, Irawan, Agung
Antibody response and abomasal histopathology of lambs with haemonchosis during supplementation with medicinal plants and organic selenium
2023, Batťányi, Dominika, Petrič, Daniel, Babják, Michal, Dvorožňáková, Emília, Łukomska, Anna, Cieślak, Adam, Várady, Marián, Váradyová, Zora
Insights into the role of bioactive plants for lambs infected with Haemonchus contortus parasite
2025, Komáromyová, Michaela, Petrič, Daniel, Demčáková, Klára, Leško, Matej, Čobanová, Klaudia, Babják, Michal, Königová, Alžbeta, Kuzmina, Tetiana, Ślusarczyk, Sylwester, Fortuna, Paulina Izabela, Łukomska, Anna, Sidoruk, Pola, Cieślak, Adam, Váradyová, Zora, Várady, Marián
Bioactive plants provide therapeutic and prophylactic effects to ruminants. We determined the effect of grazing on natural meadow grassland enriched with experimentally sown chicory (Cichorium intybus) on parasitological status, pasture larval infectivity, antioxidant parameters, and the histology of abomasal tissue in lambs experimentally infected with the parasitic gastrointestinal nematode (GIN) Haemonchus contortus. We also qualitatively identified the main polyphenols in the meadow grassland and phenolic metabolites in the feces of the lambs. Sixteen lambs were orally infected with approximately 5,000 infective larvae (L3) of H. contortus. The lambs were divided into two groups: lambs grazing on a plot consisting exclusively of meadow pasture which serves as control group and lambs grazing on a plot where approximately 25% of a meadow grassland was reclaimed with chicory. The experimental period was 144 days. The number of eggs per gram (EPG) of feces was quantified on D21, D34, D48, D62, D76, D89, D103, D118, D131, and D144 post-infection. Pasture contamination with H. contortus L3 was examined. EPG in both groups of lambs was highest at D34. Egg shedding was significantly lower in both groups from D48 onwards, with a reduction of >95% from D103 onwards. Pasture contamination with L3 was highest at D41 but was then significantly lower in both groups. The total antioxidant capacity, the activity of glutathione peroxidase and the concentration of malondialdehyde in the serum changed significantly during the experiment (p < 0.003, < 0.001, and < 0.016, respectively). At least 54 species of meadow plants were identified on both pasture plots; plant bioactive compounds identified were mainly phenolic acids, flavonoids, and glucosides. Phenolic metabolites (e.g., coumaric acid, chicory acid, salvigenin, and esters of gallic acid) were identified in the feces of the lambs. In some lambs, the morphological observation identified small histopathological changes in the abomasal tissues typical of hemonchosis. Both the natural meadow pasture and the pasture enriched with experimentally sown chicory slowed the dynamics of GIN infection and pasture contamination with L3 by mobilizing the antioxidant defensive system and gradually increasing the resistance of the infected lambs, probably due to the beneficial effects of plant bioactive substances.
Effects of ensiled wheat straw with brewer’s spent yeast on milk production and nutrient utilisation in dairy cows
2025, Terefe, G., Sznajder, J., Szczesny, J., Mekonnen, B., Sidoruk, P., Walelegn, M., Kitaw, G., Faji, M., Dejene, M., Yadessa, E., Olorunlowu, S., Steppa, Ryszard, Pelec, Tomasz, Min, G., Irawan, A., Rizki Yanza, Y., Kumar Patra, A., Szumacher, Małgorzata, Cieślak, Adam
Rice Bran in Old Horses Nutrition and its Influence on Condition, Blood Biochemical Parameters, Total Feces Bacteria and Methanogen Population
2023, Filipiak, Weronika, Cieślak, Adam, Gogulski, Maciej, Kołodziejski, Paweł Antoni, Szumacher-Strabel, Małgorzata
Abstract This study aimed to verify whether the inclusion of 0.5 kg full-fat rice bran per day in the diet of geriatric horses will improve their condition, increase the population of methanogens in the cecum, and thus affect the biochemical blood parameters. The experiment included 2 research periods: 6 healthy, non-working horses over 20 years of age (480 ± 20 kg of body weight) fed only hay (±8.86 kg/day/head) in the first period and hay (±8.00 kg/day/head) and rice bran (0.5 kg/day/head) in the second one. Each of these periods lasted 4 months. The Body Condition Scoring (BCS) assessment was performed at the beginning and end of the experiment. Blood and feces samples were collected on the first and last day of each period. After feeding with the addition of rice bran, BCS increased by 1.17 units on a 9-point scale. The experiment showed an increase in the total number of bacteria and methanogens inhabiting the cecum of horses. This can lead to better digestion of carbohydrates, absorption of nutrients, and, consequently, increased body weight. No differences occurred in the hematology and serum biochemistry indices of horses fed a diet including rice bran, except for the amount of serum globulin and the albumin to globulin ratio. Rice bran affected essential serum fatty acid profile (increased PUFA and decreased MUFA), which confirmed the possibility to use diet as a serum fatty acids profile modulator.
Efficacy of zinc nanoparticle supplementation on ruminal environment in lambs
2024, Petrič, Daniel, Mikulová, Klára, Bombárová, Alexandra, Batťányi, Dominika, Čobanová, Klaudia, Kopel, Pavel, Łukomska, Anna, Pawlak, Piotr, Sidoruk, Pola, Kotwica, Szymon, Cieślak, Adam, Váradyová, Zora
Oil-in-Water Nanoemulsion Can Modulate the Fermentation, Fatty Acid Accumulation, and the Microbial Population in Rumen Batch Cultures
2023, El-Sherbiny, Mohamed, Khattab, Mostafa S. A., Abd El Tawab, Ahmed M., Elnahr, Mostafa, Cieślak, Adam, Szumacher-Strabel, Małgorzata
In this study, three oil-in-water nanoemulsions were tested in two stages: In the first stage, three levels (on the substrate dry matter (DM)), namely 3%, 6%, and 9%, of three different oils, olive oil (OO), corn oil (CO), and linseed oil (LO), in raw and nanoemulsified (N) forms were used separately in three consecutive rumen batch cultures trials. The second stage, which was based on the first stage’s results, consisted of a batch culture trial that compared the raw and nanoemulsified (N) forms of all three oils together, provided at 3% of the DM. In the first stage, NOO, NCO, and NLO preserved higher unsaturated fatty acid (UFA) and less saturated fatty acid (SFA) compared to OO, CO, and LO, respectively; noticeably, NCO had UFA:SFA = 1.01, 1.16, and 1.34 compared to CO, which had UFA:SFA = 0.66, 0.69, and 0.72 when supplemented at 3%, 6%, 9% of DM, respectively. In the second stage, UFA:SFA = 1.04, 1.12, and 1.07 for NOO, NCO, NLO, as compared to UFA:SFA = 0.69, 0.68, and 0.72 for OO, CO, and LO supplemented at 3% of DM. In conclusion, oil-in-water nanoemulsions showed an ability to decrease the transformation of UFA to SFA in the biohydrogenation environment without affecting the rumen microorganisms.
Pulsed Electric Field (PEF) Treatment Results in Growth Promotion, Main Flavonoids Extraction, and Phytochemical Profile Modulation of Scutellaria baicalensis Georgi Roots
2025, Grzelka, Kajetan, Matkowski, Adam, Chodaczek, Grzegorz, Jaśpińska, Joanna, Pawlikowska-Bartosz, Anna, Słupski, Wojciech, Lechniak Dorota, Szumacher, Małgorzata, Olorunlowu, Segun, Szulc, Karolina, Cieślak, Adam, Ślusarczyk, Sylwester
This study aims to explore the effect of pulsed electric field (PEF) treatment as a method very likely to result in reversible electroporation of Scutellaria baicalensis Georgi underground organs, resulting in increased mass transfer and secondary metabolites leakage. PEF treatment with previously established empirically tailored parameters [E = 0.3 kV/cm (U = 3 kV, d = 10 cm), t = 50 µs, N = 33 f = 1 Hz] was applied 1–3 times to S. baicalensis roots submerged in four different Natural Deep Eutectic Solvents (NADES) media (1—choline chloride/xylose (1:2) + 30% water, 2—choline chloride/glucose (1:2) + 30% water, 3—choline chloride/ethylene glycol (1:2), and 4—tap water (EC = 0.7 mS/cm). Confocal microscopy was utilized to visualize the impact of PEF treatment on the root cells in situ. As a result of plant cell membrane permeabilization, an extract containing major active metabolites was successfully acquired in most media, achieving the best results using medium 1 and repeating the PEF treatment twice (baicalein <LOQ, baicalin 12.85 µg/mL, wogonin 2.15 µg/mL, and wogonoside 3.01 µg/mL). Wogonin concentration in NADES media was on par with the control (plants harvested on the day of the experiment, ultrasound-mediated methanolic extraction, Cwogonin = 2.15 µg/mL). After successful extraction, PEF treatment allowed the plants to continue growing, with the lowest survival rate across treated groups being 60%. Additionally, an enhancement in plant growth parameters (length and fresh mass of the roots) and significant changes in the S. baicalensis root phytochemical profile were also observed.
Impact of dietary salicylates on angiogenic factors and biochemical parameters in a rat model of preeclampsia
2025, Suliburska, Joanna, Cholik, Rafsan Syabani, Karaźniewicz-Łada, Marta, Wronka, Dorota, Karlik, Anna, Waśkiewicz, Agnieszka, Skrypnik, Katarzyna, Kołodziejski, Paweł, Cieślak, Adam, Przybył, Łukasz
Background The pathophysiology of preeclampsia involves impaired cytotrophoblastic invasion, placental ischemia, inflammation, and angiogenic imbalance. Prophylactic low-dose aspirin can reduce the risk of preeclampsia and fetal growth restriction in high-risk women. This study evaluated the effect of dietary salicylates on the development of preeclampsia in rats treated with L-NAME (NG-nitro-L-arginine-methyl ester). Methodology Pregnant Sprague-Dawley rats were randomly assigned to six groups and treated with dietary salicylates at two dose levels (1 and 10 mg/kg diet) or aspirin (doses adjusted to dietary salicylates). Preeclampsia was induced by administering L-NAME in drinking water from gestational days 6–19. Results Neither dietary salicylates nor aspirin, at either dose, affected blood pressure in L-NAME-treated rats. The lower dose of dietary salicylates significantly reduced urinary albumin levels. Both interventions prevented an increase in the sFlt/PLGF ratio and mitigated histopathological placental changes in preeclamptic rats. The higher dose of aspirin reduced placental VEGFR2 protein levels. Conclusion Dietary salicylate supplementation does not provide clear preventive effects against preeclampsia.
Dietary cannabidiol and nanoselenium mediates post-infection changes in the profiles of fatty acids, sarcoplasmic proteins, and meat properties of C. perfringens-challenged chickens
2025-09-01, Kinsner, M., Szkopek, D., Jaworska, D., Kotlarska, A., Przybylski, W., Bień, D., Michalczuk, M., Cieślak, Adam, Kozłowski, K., Matusevičius, P., Konieczka, P., Uniwersytet Przyrodniczy w Poznaniu
Effects of a Multi-Strain Lactic and Propionic Acid Bacteria Inoculant on Silage Quality, Methane Emissions, Milk Composition, and Rumen Microbiome
2025, Olorunlowu, Segun, Sidoruk, Pola, Sznajder, Julia, Szczesny, Jakub, Cieślak, Dorota Marta, Pawlak, Piotr, Ryczek, Marcin, Huang, Haihao, Li, Lingyan, Irawan, Agung, Komisarek, Jolanta, Szumacher, Małgorzata, Cieślak, Adam
Ensiling grass with microbial inoculants is a promising strategy to enhance forage quality, animal performance, and environmental sustainability. This study evaluated the effects of a multi-strain inoculant (Lactobacillus plantarum, L. buchneri, Propionibacterium acidipropionici, and P. thoeni) on silage fermentation, nutrient digestibility, milk production, methane emissions, and rumen microbiota in dairy cows. In a 2 × 2 crossover design, 24 lactating Polish Holstein–Friesians were fed total mixed rations differing only in grass silage treated with or without inoculant. Inoculated silage had lower pH (4.56 vs. 5.06; p = 0.02) and higher crude protein (129 vs. 111 g/kgDM; p < 0.05). Cows fed inoculated silage showed higher ruminal propionate (28.3 vs. 26.3 mM; p = 0.03), reduced ammonia (7.61 vs. 8.67 mM; p = 0.02), and fewer protozoa (1.21 vs. 1.66 × 105/mL; p = 0.03). Nutrient digestibility improved (p < 0.05), while methane emissions declined both per cow (368 vs. 397 g/d; p = 0.01) and per kgDMI (15.1 vs. 16.5; p = 0.01). Milk yield increased (p = 0.04), and the fatty acid profile improved. Our study revealed that cows fed inoculated silage had higher nutrient digestibility, lower methane emissions, and microbial shifts in the rumen detected by 16S rRNA sequencing (p < 0.05).