Now showing 1 - 20 of 44
No Thumbnail Available
Publication

Modification of the Protein Amino Acid Content in Hen Eggs as a Consequence of Different Concentrations of Lupine and Soy in Feed

2024, Tomczak, Aneta, Zielińska-Dawidziak, Magdalena, Klimowicz, Piotr, Hejdysz, Marcin, Kaczmarek, Sebastian, Siger, Aleksander, Cieślak, Adam

The effect of the diet modification (soybean and lupine addition) on the content of protein and amino acids (AA) in eggs was studied. Both the sampling day and the diet influenced the total protein content. In albumen, the lowest protein content (10.6%) was noted after administering a diet containing 25% lupine; in the same egg the yolk contained the most proteins (16.7%). In the content of nonessential AA (NAA) in egg yolks, differences were noted only for cysteine, with its the highest content in the yolks of the control group. The stable content of essential yolk amino acids (EAA) was observed only for isoleucine, leucine, tryptophan and phenylalanine. The highest contents of EAA and NAA were recorded in the yolks of the control group (~47 and ~53 g/100 g of protein, respectively) and in the group with 25% additions of lupine (~42 and ~51 g/100 g of protein, respectively). AA with constant content in the tested albumens were methionine, tryptophan and alanine. The highest content of EAA (>~42 g/100 g of protein) and NAA (>~62 g/100 g of protein) were determined in albumen of eggs determined in the group with at least 20% additions of lupine. The highest content of EAA for humans delivered eggs from groups 4–6 (with the addition of soy into the diet ≤5%). The protein sources used in the hen diet significantly influenced the content of protein and individual AA in the produced eggs.

No Thumbnail Available
Publication

Cutting-edge exploration of insect utilization in ruminant nutrition—feature and future: a systematic review and meta-analysis

2024, Gao, Min, El-Sherbiny, Mohamed, Szumacher, Małgorzata, Cieślak, Adam, Yanza, Yulianri R., Irawan, Agung, Xie, Biao, Cao, Zhi-jun, Fusaro, Isa, Jalal, Hassan, Abd El Tawab, Ahmed M., Liu, Yong-bin

There has been a growing interest in using insects as sustainable protein sources for ruminant feed, such as the adults of the two-spotted cricket (Gryllus bimaculatus), larvae of the mealworm beetle (Tenebrio molitor), black soldier fly (Hermetia illucens), and pupae of the silkworm (Bombyx mori). The advantages of these insects over other plant materials lie in their elevated levels of crude protein and fat. However, this interest lacks a comprehensive understanding of the impact of insects on the ruminal fermentation processes, including digestibility and gas production, as well as the impact on animal performance and related health aspects. This review offers a comprehensive analysis of ruminal fermentation indices across diverse insect species. Employing descriptive and meta-analysis methodologies, we examined the impact of incorporating insect-derived meals in ruminants’ diets. Moreover, we evaluated the growth performance and biochemical parameters of blood in ruminants when species such as Tenebrio molitor, Hermetia illucens, Oriental Hornet (Vespa Orientalis), and Bombyx mori were incorporated into ruminants’ diets. The meta-analysis was performed on a limited dataset of 14 in vitro and eight in vivo trials, investigating insect meal as a potential feed source. A comparison is drawn between these insect-based feeds and conventional dietary sources such as soybean meal, alfalfa hay, and commercial concentrate diets. Our meta-analysis revealed that incorporating Gryllus bimaculatus and Hermetia illucens to partially replace protein sources in ruminants’ diet did not adversely affect digestibility, ruminal fermentation, and ruminant production, supporting the feasibility as a feed ingredient for ruminant animals. In addition, the oriental hornet showed an overall higher outcome on the final BW, ADG, digestibility, and volatile fatty acid (VFA) production, suggesting the promising effect of this insect for future use in ruminants. The data also indicates that dietary insect inclusion levels should not exceed 30% (DM basis) to achieve an optimal ruminal fermentation profile. Furthermore, it offers comparative insights into the nutritional value of these insects, which warrant further investigation at the in vivo level. Ultimately, the existing understanding of the nutritional utilization potential of these insects by ruminants, particularly concerning macro- and micronutrients, is evaluated and revealed to be significantly constrained.

No Thumbnail Available
Patent

Fermentowany makuch rzepakowy dla zwierząt, zwłaszcza dla zwierząt monogastrycznych, zwłaszcza dla kurcząt i indyków rzeźnych, pasza dla zwierząt, zwłaszcza dla zwierząt monogastrycznych, zwłaszcza dla kurcząt i indyków rzeźnych i zastosowanie fermentowanego makuchu rzepakowego i paszy zawierającej fermentowany makuch rzepakowy

2021, DAMIAN JÓZEFIAK, ANITA ZAWORSKA, MAŁGORZATA KASPROWICZ-POTOCKA, ADAM CIEŚLAK, MAŁGORZATA SZUMACHER-STRABEL, JAN JANKOWSKI, EWA SAWOSZ-CHWALIBÓG, ROMUALD ZABIELSKI, SYLWESTER ŚWIĄTKIEWICZ, ANNA ARCZEWSKA-WŁOSEK, ARTUR JÓŹWIK, NINA STRZAŁKOWSKA

No Thumbnail Available
Publication

Impact of dietary salicylates on angiogenic factors and biochemical parameters in a rat model of preeclampsia

2025, Suliburska, Joanna, Cholik, Rafsan Syabani, Karaźniewicz-Łada, Marta, Wronka, Dorota, Karlik, Anna, Waśkiewicz, Agnieszka, Skrypnik, Katarzyna, Kołodziejski, Paweł, Cieślak, Adam, Przybył, Łukasz

Background The pathophysiology of preeclampsia involves impaired cytotrophoblastic invasion, placental ischemia, inflammation, and angiogenic imbalance. Prophylactic low-dose aspirin can reduce the risk of preeclampsia and fetal growth restriction in high-risk women. This study evaluated the effect of dietary salicylates on the development of preeclampsia in rats treated with L-NAME (NG-nitro-L-arginine-methyl ester). Methodology Pregnant Sprague-Dawley rats were randomly assigned to six groups and treated with dietary salicylates at two dose levels (1 and 10 mg/kg diet) or aspirin (doses adjusted to dietary salicylates). Preeclampsia was induced by administering L-NAME in drinking water from gestational days 6–19. Results Neither dietary salicylates nor aspirin, at either dose, affected blood pressure in L-NAME-treated rats. The lower dose of dietary salicylates significantly reduced urinary albumin levels. Both interventions prevented an increase in the sFlt/PLGF ratio and mitigated histopathological placental changes in preeclamptic rats. The higher dose of aspirin reduced placental VEGFR2 protein levels. Conclusion Dietary salicylate supplementation does not provide clear preventive effects against preeclampsia.

No Thumbnail Available
Publication

Pulsed Electric Field (PEF) Treatment Results in Growth Promotion, Main Flavonoids Extraction, and Phytochemical Profile Modulation of Scutellaria baicalensis Georgi Roots

2025, Grzelka, Kajetan, Matkowski, Adam, Chodaczek, Grzegorz, Jaśpińska, Joanna, Pawlikowska-Bartosz, Anna, Słupski, Wojciech, Lechniak Dorota, Szumacher, Małgorzata, Olorunlowu, Segun, Szulc, Karolina, Cieślak, Adam, Ślusarczyk, Sylwester

This study aims to explore the effect of pulsed electric field (PEF) treatment as a method very likely to result in reversible electroporation of Scutellaria baicalensis Georgi underground organs, resulting in increased mass transfer and secondary metabolites leakage. PEF treatment with previously established empirically tailored parameters [E = 0.3 kV/cm (U = 3 kV, d = 10 cm), t = 50 µs, N = 33 f = 1 Hz] was applied 1–3 times to S. baicalensis roots submerged in four different Natural Deep Eutectic Solvents (NADES) media (1—choline chloride/xylose (1:2) + 30% water, 2—choline chloride/glucose (1:2) + 30% water, 3—choline chloride/ethylene glycol (1:2), and 4—tap water (EC = 0.7 mS/cm). Confocal microscopy was utilized to visualize the impact of PEF treatment on the root cells in situ. As a result of plant cell membrane permeabilization, an extract containing major active metabolites was successfully acquired in most media, achieving the best results using medium 1 and repeating the PEF treatment twice (baicalein <LOQ, baicalin 12.85 µg/mL, wogonin 2.15 µg/mL, and wogonoside 3.01 µg/mL). Wogonin concentration in NADES media was on par with the control (plants harvested on the day of the experiment, ultrasound-mediated methanolic extraction, Cwogonin = 2.15 µg/mL). After successful extraction, PEF treatment allowed the plants to continue growing, with the lowest survival rate across treated groups being 60%. Additionally, an enhancement in plant growth parameters (length and fresh mass of the roots) and significant changes in the S. baicalensis root phytochemical profile were also observed.

No Thumbnail Available
Publication

Meta-analysis of the effects of dietary sources of selenium on lactational performance and oxidative status of dairy cows

2023, Respati, Adib N., Yanza, Yulianri R., Yano, Aan A., Astuti, Dian, Ningsih, Niati, Purnamayanti, Lailatul, Gading, Besse M.W.T., Wardani, Wira W., Jayanegara, Anuraga, Cieślak, Adam, Irawan, Agung

No Thumbnail Available
Publication

How Tillage System Affects the Soil Carbon Dioxide Emission and Wheat Plants Physiological State

2024, Sawinska, Zuzanna, Radzikowska-Kujawska, Dominika, Blecharczyk, Andrzej, Świtek, Stanisław, Piechota, Tomasz, Cieślak, Adam, Cardenas, Laura M., Louro-Lopez, Aranzazu, Gregory, Andrew S., Coleman, Kevin, Lark, R. Murray

The cultivation or ‘tillage’ system is one of the most important elements of agrotechnology. It affects the condition of the soil, significantly modifying its physical, chemical, and biological properties, and the condition of plants, starting from ensuring appropriate conditions for sowing and plant growth, through influencing the efficiency of photosynthesis and ultimately, the yield. It also affects air transmission and the natural environment by influencing greenhouse gas (GHG) emissions potentially. Ultimately, the cultivation system also has an impact on the farmer, providing the opportunity to reduce production costs. The described experiment was established in 1998 at the Brody Agricultural Experimental Station belonging to the University of Life Sciences in Poznań (Poland) on a soil classified as an Albic Luvisol, while the described measurements were carried out in the 2022/2023 season, i.e., 24 years after the establishment of the experiment. Two cultivation methods were compared: Conventional Tillage (CT) and No Tillage (NT). Additionally, the influence of two factors was examined: nitrogen (N) fertilization (0 N—no fertilization, and 130 N–130 kg N∙ha−1) and the growth phase of the winter wheat plants (BBCH: 32, 65 and 75). The growth phase of the plants was assessed according to the method of the Bundesanstalt, Bundessortenamt and CHemische Industrie (BBCH). We present the results of soil properties, soil respiration, wheat plants chlorophyll fluorescence, and grain yield. In our experiment, due to low rainfall, NT cultivation turned out to be beneficial, as it was a key factor influencing the soil properties, including soil organic carbon (SOC) content and soil moisture, and, consequently, creating favorable conditions for plant nutrition and efficiency of photosynthesis. We found a positive effect of NT cultivation on chlorophyll fluorescence, but this did not translate into a greater yield in NT cultivation. However, the decrease in yield due to NT compared to CT was only 5% in fertilized plots, while the average decrease in grain yield resulting from the lack of fertilization was 46%. We demonstrated the influence of soil moisture as well as the growth phase and fertilization on carbon dioxide (CO2) emissions from the soil. We can clearly confirm that the tillage system affected all the parameters discussed in the work.

No Thumbnail Available
Publication

Antibody response and abomasal histopathology of lambs with haemonchosis during supplementation with medicinal plants and organic selenium

2023, Batťányi, Dominika, Petrič, Daniel, Babják, Michal, Dvorožňáková, Emília, Łukomska, Anna, Cieślak, Adam, Várady, Marián, Váradyová, Zora

No Thumbnail Available
Publication

Leverage of Essential Oils on Faeces-Based Methane and Biogas Production in Dairy Cows

2023, Mazurkiewicz, Jakub, Sidoruk, Pola, Dach, Jacek, Szumacher, Małgorzata, Lechniak, Dorota, Galama, Paul, Kuipers, Abele, Antkowiak, Ireneusz Ryszard, Cieślak, Adam

Currently, there is an ongoing intensive search for solutions that would effectively reduce greenhouse gas emissions (mainly methane) into the environment. From a practical point of view, it is important to reduce methane emissions from cows in such a way as to simultaneously trim emissions from the digestive system and increase its potential production from feces, which is intended as a substrate used in biogas plants. Such a solution would not only lower animal-based methane emissions but would also enable the production of fuel (in chemical form) with a high yield of methane from biogas, which would boost the economic benefits and reduce the use of fossil fuels. We tested the effect of administering an essential oil blend consisting of 5.5% oils and fats on methane and biogas production from dairy cow feces during fermentation. Three subsequent series (control and experimental) were conducted in dairy cows fed a total mixed ration (TMR) rich in brewer’s cereals and beet pulp, with 20% dry matter (DM) of the total diet. Cows from the experimental group received 20 g/cow/day of essential oil blend, namely a commercial additive (CA). The study showed that CA can increase the production of methane and biogas from dairy cow feces. It can be concluded that in the experimental groups, approx. 15.2% and 14.4% on a fresh matter basis and 11.7% and 10.9% on a dry matter basis more methane and biogas were generated compared to the control group, respectively. Therefore, it can be assumed that the use of CA in cow nutrition improved dietary digestibility, which increased the efficiency of the use of feces organic matter for biogas production.

No Thumbnail Available
Publication

Oil-in-Water Nanoemulsion Can Modulate the Fermentation, Fatty Acid Accumulation, and the Microbial Population in Rumen Batch Cultures

2023, El-Sherbiny, Mohamed, Khattab, Mostafa S. A., Abd El Tawab, Ahmed M., Elnahr, Mostafa, Cieślak, Adam, Szumacher-Strabel, Małgorzata

In this study, three oil-in-water nanoemulsions were tested in two stages: In the first stage, three levels (on the substrate dry matter (DM)), namely 3%, 6%, and 9%, of three different oils, olive oil (OO), corn oil (CO), and linseed oil (LO), in raw and nanoemulsified (N) forms were used separately in three consecutive rumen batch cultures trials. The second stage, which was based on the first stage’s results, consisted of a batch culture trial that compared the raw and nanoemulsified (N) forms of all three oils together, provided at 3% of the DM. In the first stage, NOO, NCO, and NLO preserved higher unsaturated fatty acid (UFA) and less saturated fatty acid (SFA) compared to OO, CO, and LO, respectively; noticeably, NCO had UFA:SFA = 1.01, 1.16, and 1.34 compared to CO, which had UFA:SFA = 0.66, 0.69, and 0.72 when supplemented at 3%, 6%, 9% of DM, respectively. In the second stage, UFA:SFA = 1.04, 1.12, and 1.07 for NOO, NCO, NLO, as compared to UFA:SFA = 0.69, 0.68, and 0.72 for OO, CO, and LO supplemented at 3% of DM. In conclusion, oil-in-water nanoemulsions showed an ability to decrease the transformation of UFA to SFA in the biohydrogenation environment without affecting the rumen microorganisms.

No Thumbnail Available
Patent

Preparat eubiotyczny dla drobiu, w szczególności kurcząt rzeźnych i sposób wytwarzania paszy dla drobiu w szczególności kurcząt rzeźnych

2022, DAMIAN JÓZEFIAK, ANITA ZAWORSKA-ZAKRZEWSKA, MAŁGORZATA KASPROWICZ-POTOCKA, ADAM CIEŚLAK, MAŁGORZATA SZUMACHER, JAN JANKOWSKI, EWA SAWOSZ-CHWALIBÓG, SYLWESTER ŚWIĄTKIEWICZ, ANNA ARCZEWSKA-WŁOSEK, ARTUR JÓŹWIK

No Thumbnail Available
Research Project

Systemy hodowli bydła w trosce o klimat

No Thumbnail Available
Publication

Potential of chicory (Cichorium intybus) sward to improve growth performance and the fatty acid profile of rumen fluid, liver, muscle, and subcutaneous fat tissues of lamb

2025, Sidoruk, Pola, Olorunlowu, Segun, Pawlak, Piotr, Cieślak, Dorota Marta, Sznajder, Julia, Szczesny, Jakub, Komisarek, Jolanta, Leško, Matej, Petrič, Daniel, Ślusarczyk, Sylwester, Lechtanska, Joanna, Komáromyová, Michaela, Patra, Amlan Kumar, Szumacher, Małgorzata, Várady, Marián, Váradyová, Zora, Cieślak, Adam

No Thumbnail Available
Publication

Impact of Some Forage Species Derived from Egyptian Rangelands on Rumen Fluid Parameters and Methane Production: In Vitro

2023, S. Abbas, Mohamed, Mahmoud, Adel E.M., Mohamed, Hemat S., Cieślak, Adam, Szumacher, Małgorzata

No Thumbnail Available
Publication

Growth Performance and Ruminal Fermentation in Lambs with Endoparasites and In Vitro Effect of Medicinal Plants

2023, Mikulová, Klára, Petrič, Daniel, Komáromyová, Michaela, Batťányi, Dominika, Kozłowska, Martyna, Cieślak, Adam, Ślusarczyk, Sylwester, Várady, Marián, Váradyová, Zora

We investigated growth performance and ruminal fermentation associated with gastrointestinal nematode (GIN) Haemonchus contortus in lambs and in vitro ruminal fermentation of mallow, chamomile, fumitory, wormwood (Herbmix), and chicory using inoculum from GIN-infected lambs. Twelve lambs were equally divided into two groups: uninfected animals (CON) and animals infected (INF) with approximately 5000 third-stage larvae derived from the MHCo1 strain of GIN H. contortus. Two lambs per group were killed on days 48, 49, and 50 after infection and ruminal content was collected separately from each lamb. Batch cultures of ruminal fluid from CON and INF were incubated for 24 h in vitro with 0.25 g meadow hay, Herbmix, and chicory using an in vitro gas production technique. Daily weight gain was relatively lower in the INF than the CON group, but not significantly (72.6 vs. 130.1 g/day). The ruminal populations of protozoa, bacteria, total Archaea, Methanobacteriales, and Methanomicrobiales were significantly higher in the INF than in the CON group. The substrates affected the concentrations of n-butyrate, iso-butyrate, n-valerate, iso-valerate, ammonia-N, total gas, and methane (p < 0.001) in vitro. GIN infection affected fermentation and microbial population in the rumens of the lambs, and chicory was a promising substrate to modulate ruminal fermentation in vitro.

No Thumbnail Available
Publication

Rice Bran in Old Horses Nutrition and its Influence on Condition, Blood Biochemical Parameters, Total Feces Bacteria and Methanogen Population

2023, Filipiak, Weronika, Cieślak, Adam, Gogulski, Maciej, Kołodziejski, Paweł Antoni, Szumacher-Strabel, Małgorzata

Abstract This study aimed to verify whether the inclusion of 0.5 kg full-fat rice bran per day in the diet of geriatric horses will improve their condition, increase the population of methanogens in the cecum, and thus affect the biochemical blood parameters. The experiment included 2 research periods: 6 healthy, non-working horses over 20 years of age (480 ± 20 kg of body weight) fed only hay (±8.86 kg/day/head) in the first period and hay (±8.00 kg/day/head) and rice bran (0.5 kg/day/head) in the second one. Each of these periods lasted 4 months. The Body Condition Scoring (BCS) assessment was performed at the beginning and end of the experiment. Blood and feces samples were collected on the first and last day of each period. After feeding with the addition of rice bran, BCS increased by 1.17 units on a 9-point scale. The experiment showed an increase in the total number of bacteria and methanogens inhabiting the cecum of horses. This can lead to better digestion of carbohydrates, absorption of nutrients, and, consequently, increased body weight. No differences occurred in the hematology and serum biochemistry indices of horses fed a diet including rice bran, except for the amount of serum globulin and the albumin to globulin ratio. Rice bran affected essential serum fatty acid profile (increased PUFA and decreased MUFA), which confirmed the possibility to use diet as a serum fatty acids profile modulator.

No Thumbnail Available
Publication

Effects of raw and fermented rapeseed cake on ruminal fermentation, methane emission, and milk production in lactating dairy cows

2023, Gao, Min, Cieślak, Adam, Huang, Haihao, Gogulski, Maciej, Petrič, Daniel, Ruska, Diāna, Patra, Amlan Kumar, El-Sherbiny, Mohamed, Szumacher, Małgorzata

No Thumbnail Available
Publication

Chicory modulates the rumen environment in lambs with endoparasites

2025, Petrič, Daniel, Leško, Matej, Demčáková, Klára, Komáromyová, Michaela, Ślusarczyk, Sylwester, Krauze, Izabela, Łukomska, Anna, Pawlak, Piotr, Sidoruk, Pola, Cieślak, Adam, Várady, Marián, Váradyová, Zora

No Thumbnail Available
Publication

Effect of IVM media supplementation with a blend of n6/n3 fatty acids on the quality of bovine oocytes and blastocysts

2025, Fakruzzaman, Md., Warzych-Plejer, Ewelina, Pawlak, Piotr, Madeja, Zofia E., Cieślak, Adam, Szkudelska, Katarzyna, Lechtanska, Joanna, Lechniak, Dorota

No Thumbnail Available
Publication

XVIII Forum Zootechniczno-Weterynaryjne w Poznaniu

2024, Składanowska-Baryza, Joanna, Cieślak, Adam