Now showing 1 - 2 of 2
No Thumbnail Available
Publication

Structural Polymorphisms of Chromosome 3Am Containing Lr63 Leaf Rust Resistance Loci Reflect the Geographical Distribution of Triticum monococcum L. and Related Diploid Wheats

2022, Noweiska, Aleksandra, Bobrowska, Roksana, Kwiatek, Michał Tomasz

Wheat is one of the world’s crucial staple food crops. In turn, einkorn wheat (Triticum monococcum L.) is considered a wild relative of wheat (Triticum aestivum L.) and can be used as a source of agronomically important genes for breeding purposes. Cultivated T. monococcum subsp. monococcum originated from T. monococcum subsp. aegilopoides (syn. T. boeticum). For the better utilization of valuable genes from these species, it is crucial to discern the genetic diversity at their cytological and molecular levels. Here, we used a fluorescence in situ hybridization toolbox and molecular markers linked to the leaf rust resistance gene Lr63 (located on the short arm of the 3Am chromosome—3AmS) to track the polymorphisms between T. monococcum subsp. monococcum, T. boeticum and T. urartu (A-genome donor for hexaploid wheat) accessions, which were collected in different regions of Europe, Asia, and Africa. We distinguished three groups of accessions based on polymorphisms of cytomolecular and leaf rust resistance gene Lr63 markers. We observed that the cultivated forms of T. monococcum revealed additional marker signals, which are characteristic for genomic alternations induced by the domestication process. Based on the structural analysis of the 3AmS chromosome arm, we concluded that the polymorphisms were induced by geographical dispersion and could be related to adaptation to local environmental conditions.

No Thumbnail Available
Publication

Multiplex PCR assay for the simultaneous identification of race specific and non-specific leaf resistance genes in wheat (Triticum aestivum L.)

2023, Noweiska, Aleksandra, Bobrowska, Roksana, Spychała, Julia, Tomkowiak, Agnieszka, Kwiatek, Michał T.

AbstractRace-nonspecific resistance is a key to sustainable management of pathogens in bread wheat (Triticum aestivum L.) breeding. It is more durable compared to race-specific immunity, conferred by the major genes (R), which are often overcome by pathogens. The accumulation of the genes, which provide the resistance to a specific race of a pathogen, together with the introduction of race-non-specific resistance genes is the most effective strategy aimed at preventing the breakdown of genetically conditioned immunity. PCR markers improved the productivity and accuracy of classical plant breeding by means of marker-assisted selection (MAS). Multiplexing assays provide increased throughput, reduced reaction cost, and conservation of limited sample material, which are beneficial for breeding purposes. Here, we described the process of customizing multiplex PCR assay for the simultaneous identification of the major leaf rust resistance genes Lr19, Lr24, Lr26, and Lr38, as well as the slow rusting, race-nonspecific resistance genes: Lr34 and Lr68, in thirteen combinations. The adaptation of PCR markers for multiplex assays relied on: (1) selection of primers with an appropriate length; (2) selection of common annealing/extension temperature for given primers; and (3) PCR mixture modifications consisting of increased concentration of primers for the scanty band signals or decreased concentration of primers for the strong bands. These multiplex PCR protocols can be integrated into a marker-assisted selection of the leaf rust-resistant wheat genotypes.