Now showing 1 - 8 of 8
No Thumbnail Available
Publication

Fruit Vinegars as Natural and Bioactive Chitosan Solvents in the Production of Chitosan-Based Films

2025, Stefanowska, Karolina, Woźniak, Magdalena, Dobrucka, Renata, Sip, Anna, Mrówczyńska, Lucyna, Waśkiewicz, Agnieszka, Ratajczak, Izabela

Natural fruit vinegars, derived from various fruits, enhance culinary experience and offer potential health benefits due to their bioactive compounds. In this study, fruit vinegars (apple, blackcurrant, and cherry) were used as natural solvents for producing chitosan films, introducing an environmentally friendly approach. Fruit vinegars and chitosan-based solutions were examined for their antioxidant and antimicrobial properties. In turn, the obtained chitosan films were characterized by their antimicrobial, mechanical, and structural properties. Both fruit vinegars and film-forming chitosan solutions showed antioxidant activity, and chitosan–cherry vinegar solutions exhibited the highest antiradical and ferrous ion-chelating effect. All solvents and chitosan-based solutions were characterized by antimicrobial properties, especially against Pseudomonas aeruginosa (inhibition zone > 28 mm). Antimicrobial activity was also preserved in the case of chitosan-based film, especially when produced with cherry vinegar, which showed activity against the broadest spectrum of bacteria. The largest zone of inhibition for all samples was observed for P. aeruginosa in the range of 19 mm from the inhibition zone to >28 mm, depending on the type of vinegar used as a solvent. The conducted tests showed that the type of vinegar used also affects the mechanical parameters of the films obtained, such as elongation at break, for which values were recorded from 3.97 to 4.93 MPa, or tensile strength, for which the values were recorded from 48.48 to 70.58 MPa. The results obtained demonstrate that natural fruit vinegars, serving as chitosan solvents, can be an alternative to traditionally used acidic solvents, yielding films with favorable properties.

No Thumbnail Available
Publication

Biopolymer Paperboard Impregnation Based on Chitosan and Nanocellulose with Addition of Caffeine and Gallic Acid

2025, Młodziejewska, Joanna, Woźniak, Magdalena, Sip, Anna, Dobrucka, Renata, Ratajczak, Izabela

In this study, the preparation and detailed characterization of a chitosan (CHT) impregnation system modified with cellulose nanofibrils (CNFs) and enriched with bioactive compounds—caffeine (CAF) and gallic acid (GA)—applied to the surface of unbleached paperboard were described. Their mechanical properties (tensile strength, elongation at break, and bursting strength), structural features, and surface barrier parameters (water absorption) were evaluated. The antibacterial activity of the formulations comprising 1% chitosan (1% CHT), 1% chitosan with 1% caffeine (1% CHT/1% CAF), and 1% chitosan with 1% gallic acid (1% CHT/1% GA)—applied to enhance the functionality of the coated paperboard—was additionally assessed. The incorporation of cellulose nanofibrils into the coating matrix markedly improved the mechanical performance of the paperboard, particularly in terms of puncture resistance and elongation at break, while all modified coatings retained high burst strength. Impregnations containing gallic acid or caffeine showed similar mechanical characteristics but improved flexibility without compromising structural integrity. Chitosan solutions containing gallic acid and solutions containing caffeine exhibited activity against the tested Gram-positive (S. aureus, L. monocytogenes) and Gram-negative (E. coli, P. aeruginosa) bacterial strains. Antibacterial analysis showed moderate activity against Gram-positive strains and strong inhibition of Gram-negative bacteria, with the 1% CHT/1% GA impregnation giving the largest zone of growth inhibition around the sample—19 mm in the agar diffusion test—indicating the strongest suppression of E. coli. It was found that incorporation of nanocellulose into the chitosan matrix significantly reduces water uptake by treated paperboard surface, which is critical in the context of food packaging. The best result—Cobb60 value of 32.85 g/m2—was achieved for the 1% CHT/1% CNF formulation, corresponding to an 87% reduction in water absorption compared to the uncoated control. The results obtained in this study indicate a promising potential for the use of these impregnation systems in sustainable packaging applications.

No Thumbnail Available
Publication

Chitosan-based films with nanocellulose and propolis as active packaging materials

2024, Stefanowska, Karolina, Bucher, Matthias, Reichert, Corina L., Sip, Anna, Woźniak, Magdalena, Schmid, Markus, Dobrucka, Renata, Ratajczak, Izabela

No Thumbnail Available
Publication

Chitosan-Based Films with Essential Oil Components for Food Packaging

2024, Woźniak, Magdalena, Młodziejewska, Joanna, Stefanowska, Karolina, Mrówczyńska, Lucyna, Sip, Anna, Dobrucka, Renata, Ratajczak, Izabela

Chitosan-based films show great potential in terms of application in food preservation and are also promising carriers of biologically active ingredients. This paper presents the potential use of chitosan-based films with the addition of essential oil components, e.g., carvacrol, eugenol, and isoeugenol, intended for food packaging. The characteristics of the obtained films were determined, including antibacterial, mechanical, barrier, and structural parameters. In addition, the antibacterial and antioxidant effects of the essential oil components were assessed. Eugenol (44.41%) and isoeugenol (43.56%) showed high antiradical activities, similar to the activity of Trolox (44.33%), which is used as a standard antioxidant. In turn, carvacrol was characterized by the strongest effect against the examined strains of bacteria, both Gram-positive and Gram-negative. The chitosan film with carvacrol showed the most valuable antibacterial and mechanical properties (tensile strength and elongation at break). The antibacterial activities of the chitosan–carvacrol films were higher than that of the carvacrol solution. The inhibition zones of the chitosan–carvacrol films were in the range 29–41 mm (except for Enterococcus faecalis, with an inhibition zone of 15 mm) compared to the inhibition zones of the carvacrol solution (28 mm). The results showed that chitosan is an effective carrier of fragrance compounds, mainly carvacrol. However, all the tested chitosan-based films with the addition of fragrance compounds showed appropriate parameters (biological, mechanical, and barrier), which makes them an ecological alternative to plastics intended for food packaging.

No Thumbnail Available
Publication

Kombucha as a Solvent for Chitosan Coatings: A New Strategy to Extend Shelf Life of Red Peppers

2025, Stefanowska, Karolina, Woźniak, Magdalena, Sip, Anna, Biegańska-Marecik, Róża, Dobrucka, Renata, Ratajczak, Izabela

Plastic pollution and environmental degradation necessitate the development of natural, biodegradable food preservation materials. This study examined chitosan-based film-forming solutions using kombucha derived from black tea, lemon balm, and chamomile as natural solvents rich in bioactive compounds. Lemon balm kombucha solutions were used to create chitosan films and coat red peppers. The study assessed the mechanical properties of the films and the effects of chitosan coating on peppers, including texture, ascorbic acid content, sensory attributes, and antioxidant activity. Microbiological tests showed that a chitosan–lemon balm kombucha solution acted against Escherichia coli, Pseudomonas aeruginosa and Salmonella enterica. Lemon balm kombucha had high total phenolic (381.67 µg GAeq/mL) and flavonoid (21.05 µg Qeq/mL) contents. The chitosan film exhibited a tensile strength of 11.08 MPa and an elongation at break of 53.45%. The water vapor transmission rate of the obtained chitosan film was 131.84 g/m2·24 h. Coated peppers showed a 32% increase in skin strength and retained 11% more ascorbic acid after 15 days. Sensory evaluation revealed no significant differences from controls. These results highlight lemon balm kombucha as a promising natural solvent for chitosan coatings, which have the potential to extend red pepper shelf life and to support food preservation.

No Thumbnail Available
Publication

A new approach to obtain chitosan films – Characteristics of films prepared with tea and coffee kombucha as natural chitosan solvents

2023, Stefanowska, Karolina, Woźniak, Magdalena, Majka, Jerzy, Sip, Anna, Mrówczyńska, Lucyna, Waśkiewicz, Agnieszka, Kozak, Wojciech, Dobrucka, Renata, Ratajczak, Izabela

No Thumbnail Available
Publication

Chitosan Films with Caffeine and Propolis as Promising and Ecofriendly Packaging Materials

2023, Stefanowska, Karolina, Woźniak, Magdalena, Majka, Jerzy, Sip, Anna, Mrówczyńska, Lucyna, Kozak, Wojciech, Dobrucka, Renata, Ratajczak, Izabela

This study addresses challenges faced by the packaging industry in finding suitable natural and biodegradable materials that can replace plastics while preserving the superior quality and freshness of the items contained within. Chitosan, a biodegradable natural polymer, shows great potential as a matrix for ecofriendly and biodegradable composite materials. In the present study, bioactive substances such as caffeine (CAF) and propolis extract (EP) were used for the enhancement of the bioactivity of chitosan-based films. Two acidic solvents, acetic acid and citric acid, were used to produce chitosan films. The study examined the antioxidant capabilities of the solutions used for film formation; similarly, the characteristics of the resultant films were also examined, encompassing antimicrobial, barrier, and mechanical characteristics. The findings suggested that the use of additives exhibiting antioxidant activity, such as CAF and EP in the chitosan matrix can be an effective method to counteract oxidative stress in food packaging. The study also showed that films produced with citric acid exhibit antimicrobial activity against many strains of bacteria, including foodborne pathogens. In addition, the antimicrobial activity of chitosan/citric acid film can be increased by adding CAF and EP. The results confirmed that both the additives and the acids used affect the mechanical and barrier features of the obtained chitosan-based films. This study suggests that chitosan films supplemented with natural bioactive substances have the potential to serve as viable replacements for traditional plastics in the packaging sector.

No Thumbnail Available
Publication

Characteristics of Chitosan Films with the Bioactive Substances—Caffeine and Propolis

2023, Stefanowska, Karolina, Woźniak, Magdalena, Sip, Anna, Mrówczyńska, Lucyna, Majka, Jerzy, Kozak, Wojciech, Dobrucka, Renata, Ratajczak, Izabela

Chitosan is a natural and biodegradable polymer with promising potential for biomedical applications. This study concerns the production of chitosan-based materials for future use in the medical industry. Bioactive substances—caffeine and ethanolic propolis extract (EEP)—were incorporated into a chitosan matrix to increase the bioactivity of the obtained films and improve their mechanical properties. Acetic and citric acids were used as solvents in the production of the chitosan-based films. The obtained materials were characterized in terms of their antibacterial and antifungal activities, as well as their mechanical properties, including tensile strength and elongation at break. Moreover, the chemical structures and surface morphologies of the films were assessed. The results showed that the solution consisting of chitosan, citric acid, caffeine, and EEP exhibited an excellent antiradical effect. The activity of this solution (99.13%) was comparable to that of the standard antioxidant Trolox (92.82%). In addition, the film obtained from this solution showed good antibacterial activity, mainly against Escherichia coli and Enterococcus faecalis. The results also revealed that the films produced with citric acid exhibited higher activity levels against pathogenic bacteria than the films obtained with acetic acid. The antimicrobial effect of the chitosan-based films could be further enhanced by adding bioactive additives such as caffeine and propolis extract. The mechanical tests showed that the solvents and additives used affected the mechanical properties of the films obtained. The film produced from chitosan and acetic acid was characterized by the highest tensile strength value (46.95 MPa) while the chitosan-based film with citric acid showed the lowest value (2.28 MPa). The addition of caffeine and propolis to the film based on chitosan with acetic acid decreased its tensile strength while in the case of the chitosan-based film with citric acid, an increase in strength was observed. The obtained results suggested that chitosan films with natural bioactive substances can be a promising alternative to the traditional materials used in the medical industry, for example, as including biodegradable wound dressings or probiotic encapsulation materials.