Now showing 1 - 3 of 3
No Thumbnail Available
Publication

Biopolymer Paperboard Impregnation Based on Chitosan and Nanocellulose with Addition of Caffeine and Gallic Acid

2025, Młodziejewska, Joanna, Woźniak, Magdalena, Sip, Anna, Dobrucka, Renata, Ratajczak, Izabela

In this study, the preparation and detailed characterization of a chitosan (CHT) impregnation system modified with cellulose nanofibrils (CNFs) and enriched with bioactive compounds—caffeine (CAF) and gallic acid (GA)—applied to the surface of unbleached paperboard were described. Their mechanical properties (tensile strength, elongation at break, and bursting strength), structural features, and surface barrier parameters (water absorption) were evaluated. The antibacterial activity of the formulations comprising 1% chitosan (1% CHT), 1% chitosan with 1% caffeine (1% CHT/1% CAF), and 1% chitosan with 1% gallic acid (1% CHT/1% GA)—applied to enhance the functionality of the coated paperboard—was additionally assessed. The incorporation of cellulose nanofibrils into the coating matrix markedly improved the mechanical performance of the paperboard, particularly in terms of puncture resistance and elongation at break, while all modified coatings retained high burst strength. Impregnations containing gallic acid or caffeine showed similar mechanical characteristics but improved flexibility without compromising structural integrity. Chitosan solutions containing gallic acid and solutions containing caffeine exhibited activity against the tested Gram-positive (S. aureus, L. monocytogenes) and Gram-negative (E. coli, P. aeruginosa) bacterial strains. Antibacterial analysis showed moderate activity against Gram-positive strains and strong inhibition of Gram-negative bacteria, with the 1% CHT/1% GA impregnation giving the largest zone of growth inhibition around the sample—19 mm in the agar diffusion test—indicating the strongest suppression of E. coli. It was found that incorporation of nanocellulose into the chitosan matrix significantly reduces water uptake by treated paperboard surface, which is critical in the context of food packaging. The best result—Cobb60 value of 32.85 g/m2—was achieved for the 1% CHT/1% CNF formulation, corresponding to an 87% reduction in water absorption compared to the uncoated control. The results obtained in this study indicate a promising potential for the use of these impregnation systems in sustainable packaging applications.

No Thumbnail Available
Publication

Characteristics of Chitosan Films with the Bioactive Substances—Caffeine and Propolis

2023, Stefanowska, Karolina, Woźniak, Magdalena, Sip, Anna, Mrówczyńska, Lucyna, Majka, Jerzy, Kozak, Wojciech, Dobrucka, Renata, Ratajczak, Izabela

Chitosan is a natural and biodegradable polymer with promising potential for biomedical applications. This study concerns the production of chitosan-based materials for future use in the medical industry. Bioactive substances—caffeine and ethanolic propolis extract (EEP)—were incorporated into a chitosan matrix to increase the bioactivity of the obtained films and improve their mechanical properties. Acetic and citric acids were used as solvents in the production of the chitosan-based films. The obtained materials were characterized in terms of their antibacterial and antifungal activities, as well as their mechanical properties, including tensile strength and elongation at break. Moreover, the chemical structures and surface morphologies of the films were assessed. The results showed that the solution consisting of chitosan, citric acid, caffeine, and EEP exhibited an excellent antiradical effect. The activity of this solution (99.13%) was comparable to that of the standard antioxidant Trolox (92.82%). In addition, the film obtained from this solution showed good antibacterial activity, mainly against Escherichia coli and Enterococcus faecalis. The results also revealed that the films produced with citric acid exhibited higher activity levels against pathogenic bacteria than the films obtained with acetic acid. The antimicrobial effect of the chitosan-based films could be further enhanced by adding bioactive additives such as caffeine and propolis extract. The mechanical tests showed that the solvents and additives used affected the mechanical properties of the films obtained. The film produced from chitosan and acetic acid was characterized by the highest tensile strength value (46.95 MPa) while the chitosan-based film with citric acid showed the lowest value (2.28 MPa). The addition of caffeine and propolis to the film based on chitosan with acetic acid decreased its tensile strength while in the case of the chitosan-based film with citric acid, an increase in strength was observed. The obtained results suggested that chitosan films with natural bioactive substances can be a promising alternative to the traditional materials used in the medical industry, for example, as including biodegradable wound dressings or probiotic encapsulation materials.

No Thumbnail Available
Publication

Chitosan Films with Caffeine and Propolis as Promising and Ecofriendly Packaging Materials

2023, Stefanowska, Karolina, Woźniak, Magdalena, Majka, Jerzy, Sip, Anna, Mrówczyńska, Lucyna, Kozak, Wojciech, Dobrucka, Renata, Ratajczak, Izabela

This study addresses challenges faced by the packaging industry in finding suitable natural and biodegradable materials that can replace plastics while preserving the superior quality and freshness of the items contained within. Chitosan, a biodegradable natural polymer, shows great potential as a matrix for ecofriendly and biodegradable composite materials. In the present study, bioactive substances such as caffeine (CAF) and propolis extract (EP) were used for the enhancement of the bioactivity of chitosan-based films. Two acidic solvents, acetic acid and citric acid, were used to produce chitosan films. The study examined the antioxidant capabilities of the solutions used for film formation; similarly, the characteristics of the resultant films were also examined, encompassing antimicrobial, barrier, and mechanical characteristics. The findings suggested that the use of additives exhibiting antioxidant activity, such as CAF and EP in the chitosan matrix can be an effective method to counteract oxidative stress in food packaging. The study also showed that films produced with citric acid exhibit antimicrobial activity against many strains of bacteria, including foodborne pathogens. In addition, the antimicrobial activity of chitosan/citric acid film can be increased by adding CAF and EP. The results confirmed that both the additives and the acids used affect the mechanical and barrier features of the obtained chitosan-based films. This study suggests that chitosan films supplemented with natural bioactive substances have the potential to serve as viable replacements for traditional plastics in the packaging sector.