Indentation Hardness and Elastic Recovery of Some Hardwood Species
2022, Sydor, Maciej, Pinkowski, Grzegorz, Kučerka, Martin, Kminiak, Richard, Antov, Petar, Rogoziński, Tomasz
The purpose of the study was to measure the Brinell hardness (HB) of six wood species and evaluate the ability to recover the depth of the imprint (self-re-deformation). Straight-grain clear samples of ash, beech, alder, birch, iroko, and linden wood were prepared. Measurements were made in the three main reference timber cross-sections: radial (R), tangential (T), and axial/longitudinal (L) and with two measuring loads of 30 kG and 100 kG (294.2 N and 980.7 N). The tested wood species could be classified into hard (ash, beech), medium-hard (alder, birch, iroko), and soft (linden) wood species. The HBs of each tested wood species differed in the cross-sections, i.e., side hardness (R, T) and end hardness (L). Higher HB values were obtained at 100 kG load in all species and all three cross-sections. The lowest influence of the measurement force value on the HB value was revealed for the soft wood species (linden: 107–118%). This influence was visible for the other five medium-hard and hard wood species, ranging from 125% to 176%. The percentage of temporary imprint in total imprint depth (x/H) varied from 12 to 33% (linden 12–18%—the lowest self-re-deformation ability; beech 25–33%—the highest self-re-deformation ability). The results of this study underline that the higher the density of the wood, the higher the Brinell hardness, and, simultaneously, the greater the measurement force used, the higher the Brinell hardness measured. The ability of self-re-deformation in wood’s R and T cross-sections depends on the wood density and the measuring force used. In contrast, this ability only depends on the wood density in the L cross-section. Those observations imply that the compaction of the cell structure during side compression is mainly non-destructive, while the longitudinal deformation of the cell structure (the buckling of cell walls and fracture of ends of the cells) is to a great degree destructive and irreversible. These results can be used in the construction and furniture sectors, especially when designing products and planning the woodworking of highly loaded wood floors and furniture elements.
The Brinell Method for Determining Hardness of Wood Flooring Materials
2020, Sydor, Maciej, Pinkowski, Grzegorz, Jasińska, Anna
We hypothesize that the ability to recovery the depth of the indentation increases with increasing the hardness of the flooring material. The research was carried out for ten lignocellulosic flooring materials: merbau, oak, maple, red oak, laminated HDF (high-density fiberboard), innovative plywood, beech, pine, peasantry, iroko. The hardness was examined using the Brinell method, and additionally, the elastic indentation of the indenter was measured during the hardness test. On this basis, the permanent (plastic) and temporary (elastic) component of total deformation was determined. Different ability to recovery was found. The harder materials were the higher percentage of elastic indentation in total indentation depth. Moreover, it was found that the measurement of the indentation diameter in wood materials is characterized by high uncertainty and measurements based on the depth of the indentation are more unambiguous and of greater practical importance, especially when testing hard lignocellulosic flooring materials.