Now showing 1 - 8 of 8
No Thumbnail Available
Publication

Development of Delivery Systems with Prebiotic and Neuroprotective Potential of Industrial-Grade Cannabis sativa L.

2024, Sip, Szymon, Stasiłowicz-Krzemień, Anna, Sip, Anna, Szulc, Piotr, Neumann, Małgorzata, Kryszak, Aleksandra, Cielecka-Piontek, Judyta

This study delves into the transformative effects of supercritical carbon dioxide (scCO2) cannabis extracts and prebiotic substances (dextran, inulin, trehalose) on gut bacteria, coupled with a focus on neuroprotection. Extracts derived from the Białobrzeska variety of Cannabis sativa, utilising supercritical fluid extraction (SFE), resulted in notable cannabinoid concentrations (cannabidiol (CBD): 6.675 ± 0.166; tetrahydrocannabinol (THC): 0.180 ± 0.006; cannabigerol (CBG): 0.434 ± 0.014; cannabichromene (CBC): 0.490 ± 0.017; cannabinol (CBN): 1.696 ± 0.047 mg/gD). The assessment encompassed antioxidant activity via four in vitro assays and neuroprotective effects against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The extract boasting the highest cannabinoid content exhibited remarkable antioxidant potential and significant inhibitory activity against both enzymes. Further investigation into prebiotic deliveries revealed their proficiency in fostering the growth of beneficial gut bacteria while maintaining antioxidant and neuroprotective functionalities. This study sheds light on the active compounds present in the Białobrzeska variety, showcasing their therapeutic potential within prebiotic systems. Notably, the antioxidant, neuroprotective, and prebiotic properties observed underscore the promising therapeutic applications of these extracts. The results offer valuable insights for potential interventions in antioxidant, neuroprotective, and prebiotic domains. In addition, subsequent analyses of cannabinoid concentrations post-cultivation revealed nuanced changes, emphasising the need for further exploration into the dynamic interactions between cannabinoids and the gut microbiota.

No Thumbnail Available
Publication

Antidiabetic Potential of Black Elderberry Cultivars Flower Extracts: Phytochemical Profile and Enzyme Inhibition

2024, Studzińska-Sroka, Elżbieta, Paczkowska-Walendowska, Magdalena, Kledzik, Justyna, Galanty, Agnieszka, Gościniak, Anna, Szulc, Piotr, Korybalska, Katarzyna, Cielecka-Piontek, Judyta

Black elderberry (Sambucus nigra L.) flowers are rich in polyphenolic compounds, including chlorogenic acid and quercetin derivatives, which are known for their health benefits, particularly their antioxidant and antidiabetic properties. This study aimed to optimize the extraction conditions using the Box–Behnken model to maximize polyphenol yields from different elderberry flower cultivars and to evaluate their potential for antidiabetic action. The extracts were analyzed for their phytochemical content and assessed for enzyme inhibition, specifically targeting enzymes critical in carbohydrate digestion and glucose regulation. The anti-inflammatory activity was also assessed. Results indicated that the Black Beauty, Obelisk, and Haschberg cultivars demonstrated significant inhibition of α-glucosidase, with a high inhibitory potential against α-amylase enzymes for the Obelisk cultivar. Additionally, high chlorogenic acid content was strongly correlated with enzyme inhibition and antioxidant activity, suggesting its substantial role in glucose regulation. This study underscores the potential of elderberry flower extracts, particularly those rich in chlorogenic acid, as natural agents for managing blood glucose levels, warranting further exploration of their use in antidiabetic applications.

No Thumbnail Available
Publication

Exploring Beneficial Properties of Haskap Berry Leaf Compounds for Gut Health Enhancement

2024, Sip, Szymon, Sip, Anna, Szulc, Piotr, Selwet, Marek, Żarowski, Marcin, Czerny, Bogusław, Cielecka-Piontek, Judyta

This study investigates the potential of formulated systems utilising haskap berry leaf extracts and dextran as carriers, to modulate both antioxidant and enzymatic inhibitory activities and their impact on the growth of specific bacterial strains. The analysis of antioxidant capacity, assessed through ABTS, CUPRAC, DPPH, and FRAP assays, revealed varying but consistently high levels across extracts, with Extract 3 (loganic acid: 2.974 mg/g, chlorogenic acid: 1.125 mg/g, caffeic acid: 0.083 mg/g, rutin: 1.137 mg/g, and quercetin: 1.501 mg/g) exhibiting the highest values (ABTS: 0.2447 mg/mL, CUPRAC: 0.3121 mg/mL, DPPH: 0.21001 mg/mL, and FRAP: 0.3411 mg/mL). Subsequent enzymatic inhibition assays demonstrated a notable inhibitory potential against α-glucosidase (1.4915 mg/mL, expressed as acarbose equivalent), hyaluronidase (0.2982 mg/mL, expressed as quercetin equivalent), and lipase (5.8715 µg/mL, expressed as orlistat equivalent). Further system development involved integration with dextran, showcasing their preserved bioactive compound content and emphasising their stability and potential bioactivity. Evaluation of the dextran systems’ impact on bacterial growth revealed a significant proliferation of beneficial strains, particularly the Bifidobacterium and lactobacilli genus (Bifidobacterium longum: 9.54 × 107 to 1.57 × 1010 CFU/mL and Ligilactobacillus salivarius: 1.36 × 109 to 1.62 × 1010 CFU/mL), suggesting their potential to modulate gut microbiota. These findings offer a foundation for exploring the therapeutic applications of haskap berry-based dextran systems in managing conditions like diabetes, emphasising the interconnected roles of antioxidant-rich botanical extracts and dextran formulations in promoting overall metabolic health.

No Thumbnail Available
Publication

Anticholinesterase Activity and Bioactive Compound Profiling of Six Hop (Humulus lupulus L.) Varieties

2024, Sagan, Bartłomiej, Czerny, Bogusław, Stasiłowicz-Krzemień, Anna, Szulc, Piotr, Skomra, Urszula, Karpiński, Tomasz M., Lisiecka, Jolanta, Kamiński, Adam, Kryszak, Aleksandra, Zimak-Krótkopad, Oskar, Cielecka-Piontek, Judyta

Hops (Humulus lupulus L.) are widely recognized for their use in brewing, but they also possess significant pharmacological properties due to their rich bioactive compounds, with many varieties exhibiting diverse characteristics. This study investigates the chemical composition and biological activities of extracts from six hop varieties, focusing on quantifying xanthohumol and lupulone using High-Performance Liquid Chromatography (HPLC) and Total Phenolic Content (TPC) analysis. The hop varieties demonstrated significant variability in bioactive compound concentrations, with Aurora showing the highest xanthohumol (0.665 mg/g) and Zwiegniowski the highest lupulone (9.228 mg/g). TPC analysis revealed Aurora also had the highest phenolic content (22.47 mg GAE/g). Antioxidant activities were evaluated using DPPH, ABTS, CUPRAC, and FRAP assays, with Aurora and Oregon Fuggle displaying the most potent capacities. Aurora, in particular, showed the highest activity across multiple assays, including significant acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase inhibition, with IC50 values of 24.39 mg/mL, 20.38 mg/mL, and 9.37 mg/mL, respectively. The chelating activity was also assessed, with Apolon demonstrating the strongest metal ion binding capacity (IC50 = 1.04 mg/mL). Additionally, Aurora exhibited the most effective hyaluronidase inhibition (IC50 = 10.27 mg/mL), highlighting its potential for anti-inflammatory applications. The results underscore the influence of genetic and environmental factors on the bioactive compound profiles of hop varieties and their biological activity offering promising avenues for pharmaceutical and nutraceutical applications. However, further studies are needed to fully understand the potential interactions between hop cones components.

No Thumbnail Available
Publication

Bifunctional Systems of Amelanchier alnifolia Leaves Extract-Oligosacharides with Prebiotic and Antidiabetic Benefits

2025, Gościniak, Anna, Sip, Anna, Szulc, Piotr, Cielecka-Piontek, Judyta

No Thumbnail Available
Publication

Elderberry Leaves with Antioxidant and Anti-Inflammatory Properties as a Valuable Plant Material for Wound Healing

2024, Studzińska-Sroka, Elżbieta, Paczkowska-Walendowska, Magdalena, Woźna, Zuzanna, Plech, Tomasz, Szulc, Piotr, Cielecka-Piontek, Judyta

Sambuci folium (elderberry leaves) have been used in traditional medicine, mainly externally, to treat skin diseases and wounds. Therefore, the aim of this study was to screen the biological activity of elderberry leaves (antioxidant potential and possibility of inhibition of tyrosinase and hyaluronidase enzymes) combined with phytochemical analysis. For this purpose, a phytochemical analysis was carried out. Elderberry leaves of 12 varieties (“Sampo”, “Obelisk”, “Dwubarwny”, “Haschberg”, “Haschberg 1”, “Koralowy”, “Sambo”, “Black Beauty”, “Black Tower”, “Golden hybrid”, “Samyl”, “Samyl 1”) in two growth stages. The compounds from the selected groups, phenolic acids (chlorogenic acid) and flavonols (quercetin), were chromatographically determined in hydroalcoholic leaf extracts. All tested elderberry leaf extracts showed antioxidant effects, but the most promising potential: very high compounds content (TPC = 61.85 mg GAE/g), antioxidant (e.g., DPPH IC50 = 1.88 mg/mL; CUPRAC IC0.5 = 0.63 mg/mL) and optimal anti-inflammatory (inhibition of hyaluronidase activity 41.28%) activities were indicated for older leaves of the “Sampo” variety. Additionally, the extract obtained from “Sampo” and “Golden hybrid” variety facilitated the treatment of wounds in the scratch test. In summary, the best multidirectional pro-health effect in treating skin inflammation was specified for “Sampo” leaves II extract (leaves during the flowering period); however, wound treatment was noted as rich in chlorogenic acid younger leaf extracts of the “Golden hybrid” variety.

No Thumbnail Available
Publication

Natural Deep Eutectic Solvents Combined with Supercritical Carbon Dioxide for the Extraction of Curcuminoids from Turmeric

2024, Stasiłowicz-Krzemień, Anna, Wójcik, Julia, Gościniak, Anna, Szymański, Marcin, Szulc, Piotr, Górecki, Krzysztof, Cielecka-Piontek, Judyta

Background: Curcuminoids, the bioactive compounds found in turmeric, exhibit potent antioxidant, anti-inflammatory, and neuroprotective properties. This study aims to enhance the extraction of curcuminoids from turmeric using environmentally friendly solvents supercritical CO2 (scCO2) combined with natural deep eutectic solvents (NADESs) in one process, and to evaluate the resulting biological activity. Methods: A Box–Behnken statistical design was applied to optimize scCO2 extraction conditions—pressure, CO2 volume, and temperature—to maximize curcuminoid yield. Next, the menthol and lactic acid NADESs were selected, and these two solvents were combined into a single turmeric extraction process. The biological activity of the resulting extract was evaluated using antioxidant assays (ferric reducing antioxidant power and 2,2-diphenyl-1-picrylhydrazyl) and enzyme inhibition assays (acetylcholinesterase, butyrylcholinesterase, and tyrosinase). Toxicity assessments were conducted on the aquatic invertebrates Daphnia pulex, Artemia sp., and Chironomus aprilinus. Results: The most effective extraction was achieved using a menthol–lactic acid NADES as a cosolvent, integrated at a 1:20 ratio of plant material to NADESs while in combination with scCO2. The optimized scCO2–NADES extraction resulted in a high curcuminoid yield (33.35 mg/g), outperforming scCO2 extraction (234.3 μg/g), NADESs ultrasound-assisted extraction (30.50 mg/g), and alcohol-based solvents (22.95–26.42 mg/g). In biological assays, the extract demonstrated significant antioxidant activity and effective inhibition of enzymes (acetylcholinesterase, butyrylcholinesterase, and tyrosinase). Toxicity studies showed a concentration-dependent response, with EC50 for Chironomus aprilinus at the level of 0.098 μL/mL and Daphnia pulex exhibiting high sensitivity to the extract. Conclusions: This study highlights the potential of combining NADESs and scCO2 extraction in one process, demonstrating the effectiveness of scCO2–NADES extraction in maximizing curcuminoid yield and enhancing bioactivity.

No Thumbnail Available
Publication

Antimicrobial, Probiotic, and Immunomodulatory Potential of Cannabis sativa Extract and Delivery Systems

2024, Stasiłowicz-Krzemień, Anna, Szymanowska, Daria, Szulc, Piotr, Cielecka-Piontek, Judyta

The compounds present in hemp show multidirectional biological activity. It is related to the presence of secondary metabolites, mainly cannabinoids, terpenes, and flavonoids, and the synergy of their biological activity. The aim of this study was to assess the activity of the Henola Cannabis sativae extract and its combinations with selected carriers (polyvinyl caprolactam–polyvinyl acetate–polyethylene glycol graft copolymer, magnesium aluminometasilicate, and hydroxypropyl-β-cyclodextrin) in terms of antimicrobial, probiotic, and immunobiological effects. As a result of the conducted research, the antimicrobial activity of the extract was confirmed in relation to the following microorganisms: Clostridium difficile, Listeria monocytogenes, Enterococcus faecalis, Staphylococcus aureus, Staphylococcus pyrogenes, Escherichia coli, Klebsiella pneumoniae, Salmonella typhimurium, Pseudomonas aereuginosa, and Candida albicans (microorganism count was reduced from ~102 CFU mL−1 to <10 CFU mL−1 in most cases). Additionally, for the system with hydroxypropyl-β-cyclodextrin, a significant probiotic potential against bacterial strains was established for strains Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus rhamnosus, Lactobacillus reuteri, Pediococcus pentosaceus, Lactococcus lactis, Lactobacillus fermentum, and Streptococcus thermophilus (microorganism count was increased from ~102 to 104–107). In terms of immunomodulatory properties, it was determined that the tested extract and the systems caused changes in IL-6, IL-8, and TNF-α levels.