Jak osiągnąć dobry plon kukurdzy? [Wywiadu udzielił: prof. dr hab. Piotr Szulc. Rozmowę przeprowadził: Mirosław Lewandowski]
2024, Lewandowski, Mirosław, Szulc, Piotr
Wpływ czynników agrotechnicznych na skład chemiczny ziarna kukurydzy
2022, Szulc, Piotr, Zielewicz, Waldemar, Abramczyk, Ewa, Klarzyńska, Agnieszka, Nowaczyk, Rafał
Preliminary Research on the Efficacy of Selected Herbicides Approved for Use in Sustainable Agriculture Using Spring Cereals as an Example
2025, Szulc, Piotr, Bauza-Kaszewska, Justyna, Selwet, Marek, Ambroży-Deręgowska, Katarzyna
The objective of this study was to evaluate the efficacy of selected herbicides permitted for use in sustainable agriculture, specifically targeting spring rye and spring barley in a no-till farming system. The application of chemical herbicide protection in the cultivation of spring rye and barley significantly increased the yield and improved the quality parameters of the harvested grain, with the most pronounced effect observed in spring barley. The effectiveness of the herbicide treatment in reducing the number of weeds was 99.4% for spring rye and 82.39% for spring barley. The study demonstrated that the application of chemical herbicide protection had a positive impact on the quality parameters of spring barley grain. Both the thousand-grain weight and protein content were significantly higher in the grain collected from protected plots compared to the control plots. By utilizing herbicides permitted for use in integrated production (IP) in a sustainable manner, we protect the environment while minimizing the impact on crop yields and maintaining the quality of the harvested produce.
Development of Delivery Systems with Prebiotic and Neuroprotective Potential of Industrial-Grade Cannabis sativa L.
2024, Sip, Szymon, Stasiłowicz-Krzemień, Anna, Sip, Anna, Szulc, Piotr, Neumann, Małgorzata, Kryszak, Aleksandra, Cielecka-Piontek, Judyta
This study delves into the transformative effects of supercritical carbon dioxide (scCO2) cannabis extracts and prebiotic substances (dextran, inulin, trehalose) on gut bacteria, coupled with a focus on neuroprotection. Extracts derived from the Białobrzeska variety of Cannabis sativa, utilising supercritical fluid extraction (SFE), resulted in notable cannabinoid concentrations (cannabidiol (CBD): 6.675 ± 0.166; tetrahydrocannabinol (THC): 0.180 ± 0.006; cannabigerol (CBG): 0.434 ± 0.014; cannabichromene (CBC): 0.490 ± 0.017; cannabinol (CBN): 1.696 ± 0.047 mg/gD). The assessment encompassed antioxidant activity via four in vitro assays and neuroprotective effects against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The extract boasting the highest cannabinoid content exhibited remarkable antioxidant potential and significant inhibitory activity against both enzymes. Further investigation into prebiotic deliveries revealed their proficiency in fostering the growth of beneficial gut bacteria while maintaining antioxidant and neuroprotective functionalities. This study sheds light on the active compounds present in the Białobrzeska variety, showcasing their therapeutic potential within prebiotic systems. Notably, the antioxidant, neuroprotective, and prebiotic properties observed underscore the promising therapeutic applications of these extracts. The results offer valuable insights for potential interventions in antioxidant, neuroprotective, and prebiotic domains. In addition, subsequent analyses of cannabinoid concentrations post-cultivation revealed nuanced changes, emphasising the need for further exploration into the dynamic interactions between cannabinoids and the gut microbiota.
Antidiabetic Potential of Black Elderberry Cultivars Flower Extracts: Phytochemical Profile and Enzyme Inhibition
2024, Studzińska-Sroka, Elżbieta, Paczkowska-Walendowska, Magdalena, Kledzik, Justyna, Galanty, Agnieszka, Gościniak, Anna, Szulc, Piotr, Korybalska, Katarzyna, Cielecka-Piontek, Judyta
Black elderberry (Sambucus nigra L.) flowers are rich in polyphenolic compounds, including chlorogenic acid and quercetin derivatives, which are known for their health benefits, particularly their antioxidant and antidiabetic properties. This study aimed to optimize the extraction conditions using the Box–Behnken model to maximize polyphenol yields from different elderberry flower cultivars and to evaluate their potential for antidiabetic action. The extracts were analyzed for their phytochemical content and assessed for enzyme inhibition, specifically targeting enzymes critical in carbohydrate digestion and glucose regulation. The anti-inflammatory activity was also assessed. Results indicated that the Black Beauty, Obelisk, and Haschberg cultivars demonstrated significant inhibition of α-glucosidase, with a high inhibitory potential against α-amylase enzymes for the Obelisk cultivar. Additionally, high chlorogenic acid content was strongly correlated with enzyme inhibition and antioxidant activity, suggesting its substantial role in glucose regulation. This study underscores the potential of elderberry flower extracts, particularly those rich in chlorogenic acid, as natural agents for managing blood glucose levels, warranting further exploration of their use in antidiabetic applications.
Comparative Analysis of Plant Growth-Promoting Rhizobacteria (PGPR) and Chemical Fertilizers on Quantitative and Qualitative Characteristics of Rainfed Wheat
2022, Sedri, Mohammad Hossein, Niedbała, Gniewko, Roohi, Ebrahim, Niazian, Mohsen, Szulc, Piotr, Rahmani, Hadi Asadi, Feiziasl, Vali
The indiscriminate use of hazardous chemical fertilizers can be reduced by applying eco-friendly smart farming technologies, such as biofertilizers. The effects of five different types of plant growth-promoting rhizobacteria (PGPR), including Fla-wheat (F), Barvar-2 (B), Nitroxin (N1), Nitrokara (N2), and SWRI, and their integration with chemical fertilizers (50% and/or 100% need-based N, P, and Zn) on the quantitative and qualitative traits of a rainfed wheat cultivar were investigated. Field experiments, in the form of randomized complete block design (RCBD) with four replications, were conducted at the Qamloo Dryland Agricultural Research Station in Kurdistan Province, Iran, in three cropping seasons (2016–2017, 2017–2018, and 2018–2019). All the investigated characteristics of rainfed wheat were significantly affected by the integrated application of PGPR chemical fertilizers. The grain yield of treated plants with F, B, N1, and N2 PGPR plus 50% of need-based chemical fertilizers was increased by 28%, 28%, 37%, and 33%, respectively, compared with the noninoculated control. Compared with the noninoculated control, the grain protein content was increased by 0.54%, 0.88%, and 0.34% through the integrated application of F, N1, and N2 PGPR plus 50% of need-based chemical fertilizers, respectively. A combination of Nitroxin PGPR and 100% of need-based chemical fertilizers was the best treatment to increase the grain yield (56%) and grain protein content (1%) of the Azar-2 rainfed wheat cultivar. The results of this 3-year field study showed that the integrated nutrient management of PGPR-need-based N, P, and Zn chemical fertilizers can be considered a crop management tactic to increase the yield and quality of rainfed wheat and reduce chemical fertilization and subsequent environmental pollution and could be useful in terms of sustainable rainfed crop production.
Exploring Beneficial Properties of Haskap Berry Leaf Compounds for Gut Health Enhancement
2024, Sip, Szymon, Sip, Anna, Szulc, Piotr, Selwet, Marek, Żarowski, Marcin, Czerny, Bogusław, Cielecka-Piontek, Judyta
This study investigates the potential of formulated systems utilising haskap berry leaf extracts and dextran as carriers, to modulate both antioxidant and enzymatic inhibitory activities and their impact on the growth of specific bacterial strains. The analysis of antioxidant capacity, assessed through ABTS, CUPRAC, DPPH, and FRAP assays, revealed varying but consistently high levels across extracts, with Extract 3 (loganic acid: 2.974 mg/g, chlorogenic acid: 1.125 mg/g, caffeic acid: 0.083 mg/g, rutin: 1.137 mg/g, and quercetin: 1.501 mg/g) exhibiting the highest values (ABTS: 0.2447 mg/mL, CUPRAC: 0.3121 mg/mL, DPPH: 0.21001 mg/mL, and FRAP: 0.3411 mg/mL). Subsequent enzymatic inhibition assays demonstrated a notable inhibitory potential against α-glucosidase (1.4915 mg/mL, expressed as acarbose equivalent), hyaluronidase (0.2982 mg/mL, expressed as quercetin equivalent), and lipase (5.8715 µg/mL, expressed as orlistat equivalent). Further system development involved integration with dextran, showcasing their preserved bioactive compound content and emphasising their stability and potential bioactivity. Evaluation of the dextran systems’ impact on bacterial growth revealed a significant proliferation of beneficial strains, particularly the Bifidobacterium and lactobacilli genus (Bifidobacterium longum: 9.54 × 107 to 1.57 × 1010 CFU/mL and Ligilactobacillus salivarius: 1.36 × 109 to 1.62 × 1010 CFU/mL), suggesting their potential to modulate gut microbiota. These findings offer a foundation for exploring the therapeutic applications of haskap berry-based dextran systems in managing conditions like diabetes, emphasising the interconnected roles of antioxidant-rich botanical extracts and dextran formulations in promoting overall metabolic health.
Effect of Zinc Sulfate and Adjuvants on the Physicochemical Properties and Efficacy of Bromoxynil with Terbythylazine and Nicosulfuron Mixtures Against Echinochloa crus-galli L.
2025, Idziak, Robert, Szuba-Adamska, Violetta, Waligóra, Hubert, Szulc, Piotr
The study aimed to evaluate the effects of methyl esters adjuvant, pH reducer, and zinc sulfate on the physicochemical properties (contact angle, surface tension) of a spray liquid and a bromoxynil + terbuthylazine + nicosulfuron mixture’s efficacy. Cockspur (Echinochloa crus-galli L.) was used as the test plant. The placement of any adjuvant in the spray liquid affected the reduction in contact angle, with zinc sulfate reducing it from 75.9 to 66.3°, methyl esters adjuvant from 61.8 to 47.1°, pH reducer from 58.3 to 47.0°, zinc sulfate + methyl esters adjuvant from 64.9 to 58.4°, and zinc sulfate + pH reducer from 57.1 to 44.6°. A decrease in contact angle was found with a reduction in herbicide doses, from 65.6 to 59.0°. The highest pH of the spray liquid with herbicides was found when the methyl esters adjuvant was added to the liquid (6.82–7.17), followed by 6.43–6.80 when zinc sulfate was added, and 6.05–6.30 for zinc sulfate with methyl esters adjuvant. The inclusion of adjuvant pH reducer very strongly reduced the liquid reaction to 3.28–3.60, and it was reduced to 2.76–2.90 in the presence of zinc sulfate. Bromoxynil + terbuthylazine + nicosulfuron mixtures applied with methyl esters adjuvant and zinc sulfate with pH reducer showed the highest efficacy (85–98% and 82–96%), and the efficacy was 64–81% when methyl esters adjuvant with zinc sulfate were used. The effect of the herbicide mixture with only zinc sulfate was noticeably weaker (40–81%), and it was very weak (13–43%) in the presence of adjuvant pH reducer only. On the basis of the ED50 values, the most favorable mixtures were those containing methyl esters adjuvant, methyl esters adjuvant + zinc sulfate and pH reducer + zinc sulfate in addition to the herbicides. Research has indicated that zinc sulfate could be used as an adjuvant, and will support not only the action of herbicides, but also the development of maize plants.
Bifunctional Systems of Amelanchier alnifolia Leaves Extract-Oligosacharides with Prebiotic and Antidiabetic Benefits
2025, Gościniak, Anna, Sip, Anna, Szulc, Piotr, Cielecka-Piontek, Judyta
The antioxidant and neuroprotective potential of leaves and inflorescences extracts of selected hemp varieties obtained with scCO2
2023, Stasiłowicz-Krzemień, Anna, Sip, Szymon, Szulc, Piotr, Walkowiak, Jarosław, Cielecka-Piontek, Judyta
Cannabis sativa, a versatile plant with numerous varieties, holds promising potential for a wide range of biological activity. As raw materials for research, we chose leaves and inflorescences of hemp varieties such as Białobrzeskie, Henola, and Tygra, which are cultivated mainly for their fibers or seeds. The choice of extraction is a key step in obtaining the selected compositions of active compounds from plant material. Bearing in mind the lipophilic nature of cannabinoids, we performed supercritical carbon dioxide (scCO2) extraction at 50 °C under 2000 (a) and 6000 PSI (b). The cannabinoid contents were determined with the use of the HPLC-DAD method. The antioxidant capabilities were assessed through a series of procedures, including the DPPH, ABTS, CUPRAC, and FRAP methods. The capacity to inhibit enzymes that play a role in the progression of neurodegenerative diseases, such as acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase was also studied. The dominant cannabinoids in the extracts were cannabidiol (CBD) and cannabidiolic acid (CBDA). The highest concentration of eight cannabinoids was detected in the Tygra inflorescences extract (b). The most notable antioxidant properties were provided by the Tygra inflorescences extract (b). Nonetheless, it was the Henola inflorescences extract (b) that demonstrated the most efficient inhibition of AChE and BChE, and tyrosinase was inhibited the most significantly by the Białobrzeskie inflorescences extract (b). Multidimensional comparative analysis enrolled all assays and revealed that the Henola inflorescences extract (b) showed the most substantial neuroprotective potential.
Sodium Azide as a Chemical Mutagen in Wheat (Triticum aestivum L.): Patterns of the Genetic and Epigenetic Effects with iPBS and CRED-iPBS Techniques
2023, Türkoğlu, Aras, Haliloğlu, Kamil, Tosun, Metin, Szulc, Piotr, Demirel, Fatih, Eren, Barış, Bujak, Henryk, Karagöz, Halit, Selwet, Marek, Özkan, Güller, Niedbała, Gniewko
Wheat, which is scientifically known as Triticum aestivum L., is a very nutritious grain that serves as a key component of the human diet. The use of mutation breeding as a tool for crop improvement is a reasonably rapid procedure, and it generates a variety that may be used in selective breeding programs as well as functional gene investigations. The present experiment was used to evaluate the potential application of a conventional chemical mutagenesis technique via sodium azide (NaN3) for the germination and seedling growth stage in wheat. Experiments with NaN3 mutagenesis were conducted using four different treatment periods (0, 1, 2, and 3 h) and five different concentrations (0, 0.5, 1, 1.5, and 2 mM). The genomic instability and cytosine methylation of wheat using its seeds were investigated after they were treated. In order to evaluate the genomic instability and cytosine methylation in wheat that had been treated, interprimer binding site (iPBS) markers were used. The mutagenic effects of NaN3 treatments had considerable polymorphism on a variety of impacts on the cytosine methylation and genomic instability of wheat plants. The results of the experiment showed considerable changes in the iPBS profiles produced by the administration of the same treatments at different dosages and at different times. Coupled restriction enzyme digestion interprimer binding site (CRED-iPBS) assays identified changes in gDNA cytosine methylation. The highest polymorphism value was obtained during 1 h + 2 mM NaN3, while the lowest (20.7%) was obtained during 1 h + 1.5 mM NaN3. Results showed that treatments with NaN3 had an effect on the level of cytosine methylation and the stability of the genomic template in wheat plants in the germination stage. Additionally, an integrated method can be used to for mutation-assisted breeding using a molecular marker system in wheat followed by the selection of desired mutants.
Machine Learning Analysis of the Impact of Silver Nitrate and Silver Nanoparticles on Wheat (Triticum aestivum L.): Callus Induction, Plant Regeneration, and DNA Methylation
2023, Türkoğlu, Aras, Haliloğlu, Kamil, Demirel, Fatih, Aydin, Murat, Çiçek, Semra, Yiğider, Esma, Demirel, Serap, Piekutowska, Magdalena, Szulc, Piotr, Niedbała, Gniewko
The objective of this study was to comprehend the efficiency of wheat regeneration, callus induction, and DNA methylation through the application of mathematical frameworks and artificial intelligence (AI)-based models. This research aimed to explore the impact of treatments with AgNO3 and Ag-NPs on various parameters. The study specifically concentrated on analyzing RAPD profiles and modeling regeneration parameters. The treatments and molecular findings served as input variables in the modeling process. It included the use of AgNO3 and Ag-NPs at different concentrations (0, 2, 4, 6, and 8 mg L−1). The in vitro and epigenetic characteristics were analyzed using several machine learning (ML) methods, including support vector machine (SVM), random forest (RF), extreme gradient boosting (XGBoost), k-nearest neighbor classifier (KNN), and Gaussian processes classifier (GP) methods. This study’s results revealed that the highest values for callus induction (CI%) and embryogenic callus induction (EC%) occurred at a concentration of 2 mg L−1 of Ag-NPs. Additionally, the regeneration efficiency (RE) parameter reached its peak at a concentration of 8 mg L−1 of AgNO3. Taking an epigenetic approach, AgNO3 at a concentration of 2 mg L−1 demonstrated the highest levels of genomic template stability (GTS), at 79.3%. There was a positive correlation seen between increased levels of AgNO3 and DNA hypermethylation. Conversely, elevated levels of Ag-NPs were associated with DNA hypomethylation. The models were used to estimate the relationships between the input elements, including treatments, concentration, GTS rates, and Msp I and Hpa II polymorphism, and the in vitro output parameters. The findings suggested that the XGBoost model exhibited superior performance scores for callus induction (CI), as evidenced by an R2 score of 51.5%, which explained the variances. Additionally, the RF model explained 71.9% of the total variance and showed superior efficacy in terms of EC%. Furthermore, the GP model, which provided the most robust statistics for RE, yielded an R2 value of 52.5%, signifying its ability to account for a substantial portion of the total variance present in the data. This study exemplifies the application of various machine learning models in the cultivation of mature wheat embryos under the influence of treatments and concentrations involving AgNO3 and Ag-NPs.
Effect of Doses, Application Dates, Adjuvants and Zinc Sulfate on Bromoxynil + Terbuthylazine + NicosulfuronWeed Control Efficacy and Maize Grain Yield in Mid-West Poland
2025, Idziak, Robert, Szuba-Adamska, Violetta, Waligóra, Hubert, Sobiech, Łukasz, Grzanka, Monika, Szulc, Piotr
Napoje funkcjonalne z sokiem z imbiru (Zingiber officinale Rosc.) jako efekt współpracy nauki i praktyki w zakresie innowacyjnych technologii przetwórstwa rolno- spożywczego
2025, Kobus-Cisowska, Joanna, Szulc, Piotr, Majoch, Barbara
The Dynamics of Sugar Maize (Zea mays saccharata Sturt.) Infestation of Field Pansy (Viola arvensis)
2023, Waligóra, Hubert, Majchrzak, Leszek, Zawieja, Bogna, Idziak, Robert, Szulc, Piotr
Field pansy infestation can lead to a decrease in the species diversity of plant communities and to the disappearance of other species. Field pansy infestation is fairly common in many crops, including maize. Understanding the ecology and management strategies for field pansy in maize is essential for effective weed control. This research into sugar maize was conducted from 1992 to 2019 in the Research and Education Center Gorzyń, Złotniki branch, which belongs to the Poznań University of Life Sciences. The assessment of weed infestation was carried out in experiments that focused on chemical weed control in maize. The experiments were established as single-factor randomized block designs with four field replications. The aim of the study was to evaluate dynamic changes in the status and the degree of field pansy infestation in sugar maize that was cultivated after various other crops in the Wielkopolska region, with a focus on weather conditions. The results indicated that the probability of field pansy individuals occurring among the total number of weeds was highest when maize was cultivated after wheat, but the probability of such infestation did not significantly differ when maize was sown in a crop rotation after winter triticale.
The total phenolic compound and sorgoleone content as possible indirect indicators of the allelopathic potential of sorghum varieties ( Sorghum bicolor (L.) Moench)
2023, Waligóra, Hubert, Nowicka, Sylwiana, Idziak, Robert, Ochodzki, Piotr, Szulc, Piotr, Majchrzak, Leszek