Now showing 1 - 5 of 5
No Thumbnail Available
Publication

Soil Phosphorus and Potassium Fractions in Response to the Long-Term Application of Pig Slurry and NPK Mineral Fertilizers

2025, Barłóg, Przemysław, Hlisnikovský, Lukáš, Łukowiak, Remigiusz, Kunzová, Eva

The content of bioavailable forms of phosphorus (P) and potassium (K) in soil is essential for the proper functioning of agroecosystems. This study aimed to determine the effects of pig slurry (PS) and NPK mineral fertilizers on soil phosphorus (P) and potassium (K) fractions, the relationship between these fractions and basic soil agrochemical properties, and crop yield. The research material was collected from a long-term experiment established in 1955 in Prague-Ruzyně, Czechia. The effect of two constant factors was analyzed: manure application (control, PS) and different doses of NPK fertilizers (N0P0K0, N1P1K1, N3P2K2, and N4P2K2). A significant effect of fertilization on basic soil properties was demonstrated, including total soil carbon and nitrogen. PS and NPK fertilization also significantly affected the content of water-soluble and moderate labile fractions of P and K. These fractions were positively correlated with plant-available P and K (Mehlich 3). The best fertilization option, which resulted in the greatest increase in yield, was the use of PS and mineral fertilizers at the N3P2K2 level. Increasing the nitrogen dose to the level of N4 resulted in a decrease in the content of bioavailable forms of P and K in topsoil despite the application of PS.

No Thumbnail Available
Publication

Effect of long-term application of pig slurry and NPK fertilizers on trace metal content in the soil

2024, Barłóg, Przemysław, Hlisnikovský, Lukáš, Łukowiak, Remigiusz Piotr, Kunzová, Eva

AbstractOne of the goals of sustainable agricultural production is to avoid soil contamination by elements defined as trace metals (TMs). The aim of this study was to assess the long-term impact of the use of pig slurry (PS) and NPK mineral fertilizers on the soil content of cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn). In a 9-year crop rotation, PS was used three times only before root crops. The same four levels of NPK doses (N0P0K0, N1P1K1, N3P2K2, N4P2K2) were applied to both plots with and without PS. Soil samples were collected in early spring from topsoil (0–0.3 m) and subsoil (0.3–0.6 m). Three forms of TMs were determined in the soil: pseudo-total (Aqua regia); bioavailable (Mehlich 3 method) and readily bioavailable (mobile) forms (1 M NH4NO3). The tested factors did not have a significant impact on the Cd, Cu and Pb content, regardless of the form analyzed and the soil depth. PS application significantly increased the content of bioavailable forms of Zn regardless of the year, and the content of pseudo-total Zn only in the sugar beet year, i.e. after manure application. Increasing NPK doses increased the content of mobile Zn in the topsoil, especially in PS plots. A tendency to accumulate mobile forms of Cd and Pb was also observed on NPK-fertilized plots. Thus, long-term application of high NPK doses may increase the risk of contamination of the food chain with these metals. The content of mobile Cd and Zn was positively related to the content of total nitrogen in the soil and negatively related to pH.

No Thumbnail Available
Publication

Impact of Digestate-Derived Nitrogen on Nutrient Content Dynamics in Winter Oilseed Rape Before Flowering

2025, Łukowiak, Remigiusz, Szczepaniak, Witold, Młodecki, Dominik

The increase in biogas production has caused a simultaneous increase in the production of digestate, which is a valuable carrier of nutrients in crop plant production. Digestate-derived nitrogen ensures the optimal nutritional status of winter oilseed plants at critical stages of yield formation. This hypothesis was verified in field experiments with winter oilseed rape (WOSR) conducted in the 2015/2016, 2016/2017, and 2017/2018 growing seasons. The experiment consisted of three nitrogen fertilization systems (FSs)—mineral ammonium nitrate (AN) (AN-FS), digestate-based (D-FS), and 2/3 digestate + 1/3 AN (DAN-FS)—and five Nf doses: 0, 80, 120, 160, and 240 kg N ha−1. Plants fertilized with digestate had higher yields than those fertilized with AN. The highest seed yield (SY) was recorded in the DAN-FS, which was 0.56 t ha−1 higher than that in the M-FS. The nitrogen fertilizer replacement value (NFRV), averaged over N doses, was 104% for the D-FS and reached 111% for the mixed DAN-FS system. The N content in WOSR leaves, which was within the range of 41–48 g kg−1 DM at the rosette stage and within 34–44 g kg−1 DM at the beginning of flowering, ensured optimal plant growth and seed yield. In WOSR plants fertilized with digestate, the nitrogen (N) content was significantly lower compared to that in plants fertilized with AN, but this difference did not have a negative impact on the seed yield (SY). The observed positive effect of the digestate on plant growth in the pre-flowering period of WOSR growth and on SY resulted from the impact of Mg, which effectively controlled Ca, especially in the third growing season (which was dry). Mg had a significant effect on the biomass of rosettes and on SY, but only when its content in leaves exceeded 2.0 g kg−1 DM. It is necessary to emphasize the specific role of the digestate, which significantly reduced the Ca content in the indicator WOSR organs. Increased Ca content during the vegetative period of WOSR growth reduced leaf N and Zn contents, which ultimately led to a decrease in SY. Therefore, the rosette phase of WOSR growth should be considered a reliable diagnostic phase for both the correction of plants’ nutritional status and the prediction of SY. It can be concluded that the fertilization value of digestate-derived N was the same as that of ammonium nitrate. This means that the mineral fertilizer can be replaced by digestate in WOSR production.

No Thumbnail Available
Publication

Response of Wheat and Sugar Beet to Different Mineral–Organic Fertilization in a Long-Term Experiment

2025, Barłóg, Przemysław, Hlisnikovský, Lukáš, Łukowiak, Remigiusz, Menšík, Ladislav, Kunzová, Eva

The effect of cyclic pig slurry (PS) application in long-term crop rotations with alfalfa is poorly recognized, particularly with regard to nitrogen use efficiency (NUE) in crops requiring relatively high nitrogen (N) inputs. A long-term field experiment was established in Prague-Ruzyně, Czechia, in 1955. The experiment evaluated the effects of eight fertilization combinations, involving PS application and various N, phosphorus (P) and potassium (K) rates (N0P0K0; N1P1K1; N3P2K2; and N4P2K2). The effect of fertilization was evaluated in a 9-year crop rotation, in which PS was applied only three times under root crops. Long-term different mineral fertilization treatments and the application of PS significantly affected the yield of the tested crops: winter wheat and sugar beet. The highest wheat yield (8.34 t ha−1) was observed in the PS+N3P2K2 treatment, while the highest beet yield (86.1 t ha−1) was recorded in the PS+N4P2K2 treatment. The differences compared with the absolute control (N0P0K0) were 62.3% and 40.5%, respectively. However, statistically significant differences between treatments with different NPK rates were recorded only in plots without PS. With increasing NPK fertilizer rates, the uptake of macronutrients by plants also increased. The only exception was calcium in sugar beet in PS plots. The total N accumulation in plants was proportionally related to the total N input to the soil–plant system (Nin). For winter wheat, this trend was beneficial, as it resulted in higher protein yield, whereas in beet, the sugar yield did not increase significantly when Nin exceeded 250 kg N ha−1. The obtained results indicate that, in the soil conditions of this experiment, N rates should be primarily balanced with appropriate rates of phosphorus.

No Thumbnail Available
Publication

Soil and Plant Nitrogen Management Indices Related to Within-Field Spatial Variability

2024, Łukowiak, Remigiusz Piotr, Barłóg, Przemysław, Ceglarek, Jakub

Field zones at risk of low nitrogen use efficiency (NUE) can be identified by analyzing in-field spatial variability. This hypothesis was validated by analyzing soil mineral nitrogen (Nmin) and several plant and soil N management indices. The research was conducted in Karmin (central Poland) during two growing seasons, with winter oilseed rape (2018/2019) and winter wheat (2019/2020). The study showed that the crop yield was positively related to Nmin. However, this N trait did not explain all the observed differences in the spatial variation of crop yield and plant N accumulation. In addition, the soil N management indices were more spatially variable during the growing season than the plant N management indices. Particularly high variability was found for the indices characterizing the N surplus in the soil-plant system. The calculated N surplus (Nb = N fertilizer input − N seed output) ranged from −62.8 to 80.0 kg N ha−1 (coefficient of variation, CV = 181.2%) in the rape field and from −123.5 to 8.2 kg N ha−1 (CV = 60.2%) in the wheat field. The spatial distribution maps also confirm the high variability of the parameters characterizing the post-harvest N surplus, as well as the total N input (soil + fertilizer) to the field with rape. The results obtained indicate that a field N balance carried out in different field zones allows a more accurate identification of potential N losses from the soil-plant system.