Now showing 1 - 3 of 3
No Thumbnail Available
Publication

Inhibitory Effect of Sorbus aucuparia Extracts on the Fusarium proliferatum and F. culmorum Growth and Mycotoxin Biosynthesis

2024, Ryszczyńska, Sylwia, Gumulak-Wołoszyn, Natalia, Urbaniak, Monika, Stępień, Łukasz, Bryła, Marcin, Twarużek, Magdalena, Waśkiewicz, Agnieszka

Fungal infections are among the most common diseases of crop plants. Various species of the Fusarium spp. are naturally prevalent and globally cause the qualitative and quantitative losses of farming commodities, mainly cereals, fruits, and vegetables. In addition, Fusarium spp. can synthesize toxic secondary metabolites—mycotoxins under high temperature and humidity conditions. Among the strategies against Fusarium spp. incidence and mycotoxins biosynthesis, the application of biological control, specifically natural plant extracts, has proved to be one of the solutions as an alternative to chemical treatments. Notably, rowanberries taken from Sorbus aucuparia are a rich source of phytochemicals, such as vitamins, carotenoids, flavonoids, and phenolic acids, as well as minerals, including iron, potassium, and magnesium, making them promising candidates for biological control strategies. The study aimed to investigate the effect of rowanberry extracts obtained by supercritical fluid extraction (SFE) under different conditions on the growth of Fusarium (F. culmorum and F. proliferatum) and mycotoxin biosynthesis. The results showed that various extracts had different effects on Fusarium growth as well as ergosterol content and mycotoxin biosynthesis. These findings suggest that rowanberry extracts obtained by the SFE method could be a natural alternative to synthetic fungicides for eradicating Fusarium pathogens in crops, particularly cereal grains. However, more research is necessary to evaluate their efficacy against other Fusarium species and in vivo applications.

No Thumbnail Available
Publication

Lamium album Flower Extracts: A Novel Approach for Controlling Fusarium Growth and Mycotoxin Biosynthesis

2023, Uwineza, Pascaline Aimee, Urbaniak, Monika, Stępień, Łukasz, Gramza-Michałowska, Anna, Waśkiewicz, Agnieszka

Lamium album is a medicinal flowering plant that is rich in bioactive compounds with various biological properties. Fusarium species, known for causing significant crop losses and mycotoxin contamination, pose threats to food safety and human health. While synthetic fungicides are commonly employed for fungal management, their environmental impact prompts the ongoing development of alternative methods. This study aimed to evaluate the efficacy of L. album flower extracts in inhibiting the in vitro growth and biosynthesis of mycotoxins by Fusarium culmorum and F. proliferatum strains. The extracts were obtained by supercritical fluid extraction using CO2 (SC-CO2). The effects of various concentrations (2.5, 5, 7.5, and 10%) were assessed on a potato dextrose agar (PDA) medium using the “poisoning” technique. L. album flower extracts reduced mycelium growth by 0 to 30.59% for F. culmorum and 27.71 to 42.97% for F. proliferatum. Ergosterol content was reduced by up to 88.87% for F. culmorum and 93.17% for F. proliferatum. Similarly, the amounts of synthesized mycotoxins produced by both strains were also lower compared to control cultures. These findings are a preliminary phase for further in vivo tests planned to determine the fungistatic effect of L. album flower extracts on cereal substrates as seedlings incubated in controlled environments and under field conditions. Their phytotoxicity and biological stability, as well as the possibility of formulating a bio-preparation to protect cereals against Fusarium infections, will be evaluated.

No Thumbnail Available
Publication

Antimicrobial and Antibiofilm Activity of Origanum vulgare Extracts Obtained by Supercritical Fluid Extraction Under Various Extraction Conditions

2024, Gwiazdowska, Daniela, Waśkiewicz, Agnieszka, Juś, Krzysztof, Marchwińska, Katarzyna, Frąk, Szymon, Popowski, Dominik, Pawlak-Lemańska, Katarzyna, Uwineza, Pascaline Aimee, Gwiazdowski, Romuald, Padewska, Daria, Roszko, Marek, Bryła, Marcin

Sustainable management of agri-food product safety presents a major challenge requiring extensive action to ensure food safety and consumer health. The pursuit of environmentally friendly solutions that will constitute an alternative to the chemical compounds commonly used in agriculture and the food industries is one of the most important problems. One solution is plant extracts containing various biologically active compounds and exhibiting antimicrobial activity. This study aims to determine the biological activity of extracts obtained from Origanum vulgare L. (leaves) by supercritical CO2 (SC-CO2) extraction using different reaction conditions and compositions. In vitro studies revealed antimicrobial activity against selected bacteria (including Salmonella Enteritidis, Listeria monocytogenes, and Staphylococcus aureus) and fungi (Fusarium spp.), depending mainly on the microorganism species; however, extraction conditions also influenced these properties. The microscopic observations established by optical and fluorescence microscopy showed the changes in the fungal cell’s viability and morphology. There was no observed significant release of intracellular material as stated based on ICP-MS analysis of sodium and potassium concentration. Antibiofilm properties of extract obtained by extraction at 40 °C were also demonstrated against S. aureus, P. aeruginosa, and L. monocytogenes, with stronger properties observed against Gram-positive bacteria. Phytochemical characterization of the extracts was determined using a liquid chromatography system with an orbitrap mass spectrometer (LC/MS), identifying, i.e., phenolic acids: protocatechuic, hydroxybenzoic, caffeic, and rosmarinic; flavonoids: luteolin, naringenin, and kaempferol; and terpenoids: oleanolic and ursolic acids.