Now showing 1 - 4 of 4
No Thumbnail Available
Publication

Correction: Durczak et al. Modern Methods of Asbestos Waste Management as Innovative Solutions for Recycling and Sustainable Cement Production. Sustainability 2024, 16, 8798

2025, Durczak, Karol, Pyzalski, Michał, Brylewski, Tomasz, Juszczyk, Michał, Leśniak, Agnieszka, Libura, Marek, Ustinovičius, Leonas, Vaišnoras, Mantas

The authors would like to make the following corrections to the published paper [...]

No Thumbnail Available
Publication

Modern Methods of Asbestos Waste Management as Innovative Solutions for Recycling and Sustainable Cement Production

2024, Durczak, Karol, Pyzalski, Michał, Brylewski, Tomasz, Juszczyk, Michał, Leśniak, Agnieszka, Libura, Marek, Ustinovičius, Leonas, Vaišnoras, Mantas

Managing asbestos waste presents a significant challenge due to the widespread industrial use of this material, and the serious health and environmental risks it poses. Despite its unique properties, such as resistance to high temperatures and substantial mechanical strength, asbestos is a material with well-documented toxicity and carcinogenicity. Ensuring the safe removal and disposal of asbestos-containing materials (ACM) is crucial for protecting public health, the environment, and for reducing CO2 emissions resulting from inefficient waste disposal methods. Traditional landfill disposal methods have proven inadequate, while modern approaches—including thermal, chemical, biotechnological, and mechanochemical methods—offer potential benefits but also come with limitations. In particular, thermal techniques that allow for asbestos degradation can significantly reduce environmental impact, while also providing the opportunity to repurpose disposal products into materials useful for cement production. Cement, a key component of concrete, can serve as a sustainable alternative, minimizing CO2 emissions and reducing the need for primary raw materials. This work provides insights into research on asbestos waste management, offering a deeper understanding of key initiatives related to asbestos removal. It presents a comprehensive review of best practices, innovative technologies, and safe asbestos management strategies, with particular emphasis on their impact on sustainable development and CO2 emission reduction. Additionally, it discusses public health hazards related to exposure to asbestos fibers, and worker protection during the asbestos disposal process. As highlighted in the review, one promising method is the currently available thermal degradation of asbestos. This method offers real opportunities for repurposing asbestos disposal products for cement production; thereby reducing CO2 emissions, minimizing waste, and supporting sustainable construction.

No Thumbnail Available
Publication

Synthesis and Investigation of the Hydration Degree of CA2 Phase Modified with Boron and Fluorine Compounds

2024, Pyzalski, Michał, Durczak, Karol, Sujak, Agnieszka, Juszczyk, Michał, Brylewski, Tomasz, Stasiak, Mateusz

This study investigated the effect of fluoride and boron compound additives on the synthesis and hydration process of calcium aluminate (CA2). The analysis showed that the temperature of the full synthesis of CA2 without mineralizing additives was 1500 °C. However, the addition of fluorine and boron compounds at 1% and 3% significantly reduced the synthesis temperature to a range of 1100–1300 °C. The addition of fluoride compounds did not result in the formation of fluoride compounds from CaO and Al2O3, except for the calcium borate phase (Ca3(BO3)2) under certain conditions. In addition, the cellular parameters of the synthesized calcium aluminate phases were not affected by the use of these additives. Hydration studies showed that fluoride additives accelerate the hydration process, potentially improving mechanical properties, while boron additives slow down the reaction with water. These results highlight the relevance of fluoride and boron additives to the synthesis process and hydration kinetics of calcium aluminate, suggesting the need for further research to optimize their application in practice. TG studies confirmed the presence of convergence with respect to X-ray determinations made. SEM, EDS and elemental concentration maps confirmed the presence of a higher Al/Ca ratio in the samples and also showed the presence of hexagonal and regular hydration products.

No Thumbnail Available
Publication

Changes in the Phase Composition of Calcium Aluminoferrites Based on the Synthesis Condition and Al2O3/Fe2O3 Molar Ratio

2023, Pyzalski, Michał, Brylewski, Tomasz, Sujak, Agnieszka, Durczak, Karol

The presented work concerns the study of the changes in the phase composition of calcium aluminoferrites which depend on the synthesis conditions and the selection of the Al2O3/Fe2O3 molar ratio (A/F). The A/F molar ratio extends beyond the limiting composition of C6A2F (6CaO·2Al2O3·Fe2O) towards phases richer in Al2O3. An increase in the A/F ratio above unity favours the formation of other crystalline phases such as C12A7 and C3A, in addition to calcium aluminoferrite. Slow cooling of melts characterised by an A/F ratio below 0.58, results in the formation of a single calcium aluminoferrite phase. Above this ratio, the presence of varying contents of C12A7 and C3A phases was found. The process of rapid cooling of the melts with an A/F molar ratio approaching the value of four favours the formation of a single phase with variable chemical composition. Generally, an increase in the A/F ratio above the value of four generates the formation of a calcium aluminoferrite amorphous phase. The rapidly cooled samples with compositions of C22.19A10.94F and C14.61A6.29F were fully amorphous. Additionally, this study shows that as the A/F molar ratio of the melts decreases, the elemental cell volume of the calcium aluminoferrites decreases.