Now showing 1 - 3 of 3
No Thumbnail Available
Publication

Challenges and Prospects of Applying Nanocellulose for the Conservation of Wooden Cultural Heritage—A Review

2024, Kryg, Paulina, Mazela, Bartłomiej, Perdoch, Waldemar, Broda, Magdalena, Uniwersytet Przyrodniczy w Poznaniu

Nanocellulose is a nanostructured form of cellulose, which retains valuable properties of cellulose such as renewability, biodegradability, biocompatibility, nontoxicity, and sustainability and, due to its nano-sizes, acquires several useful features, such as low density, high aspect ratio and stiffness, a high specific surface area, easy processing and functionalisation, and good thermal stability. All these make it a highly versatile green nanomaterial for multiple applications, including the conservation of cultural heritage. This review provides the basic characteristics of all nanocellulose forms and their properties and presents the results of recent research on nanocellulose formulations applied for conserving historical artefacts made of wood and paper, discussing their effectiveness, advantages, and disadvantages. Pure nanocellulose proves particularly useful for conserving historical paper since it can form a durable, stable coating that consolidates the surface of a degraded object. However, it is not as effective for wood consolidation treatment due to its poor penetration into the wood structure. The research shows that this disadvantage can be overcome by various chemical modifications of the nanocellulose surface; owing to its specific chemistry, nanocellulose can be easily functionalised and, thus, enriched with the properties required for an effective wood consolidant. Moreover, combining nanocellulose with other agents can also improve its properties, adding new functionalities to the developed supramolecular systems that would address multiple needs of degraded artefacts. Since the broad use of nanocellulose in conservation practice depends on its properties, price, and availability, the development of new, effective, green, and industrial-scale production methods ensuring the manufacture of nanocellulose particles with standardised properties is necessary. Nanocellulose is an interesting and very promising solution for the conservation of cultural heritage artefacts made of paper and wood; however, further thorough interdisciplinary research is still necessary to devise new green methods of its production as well as develop new effective and sustainable nanocellulose-based conservation agents, which would replace synthetic, non-sustainable consolidants and enable proper conservation of historical objects of our cultural heritage.

No Thumbnail Available
Publication

Fire Properties of Paper Sheets Made of Cellulose Fibers Treated with Various Retardants

2024, Szubert, Zuzanna, Mazela, Bartłomiej, Tomkowiak, Karolina, Grześkowiak, Wojciech

This article presents the results of flame-retardancy tests conducted on cellulose sheets produced using a Rapid Köthen apparatus treated with retardants. The agents used were potassium carbonate (PC) K2CO3 (concentrations of 20; 33.3; and 50% wt/wt), monoammonium phosphate (MAP) NH4H2PO4 (concentrations of 35% wt/wt), diammonium phosphate (DAP) (NH4)2HPO4 (concentrations of 42.9% wt/wt), and bisguanidal phosphate (FOS) C2H10N6 (concentrations of 22.5% wt/wt). The agents were used to improve Kraft cellulose-based sheets’ flame-retardant properties and compare their performances. As part of the study, the flammability of the materials was determined by the following methods: an oxygen index (OI) test, a mass loss calorimeter (MLC) test, and a mini fire tube (MFT) test. All formulations showed an increase in flame retardancy compared to the control test. All protected samples were non-flammable for OI determinations, and DAP-protected samples showed the highest OI index. For the MLC test, DAP-protected and MAP-protected samples showed the best heat-release rate (HRR), total heat release (THR), and average heat-release rate (ARHE) (samples did not ignite for 600 s). In the MFT test, all treated samples had comparably reduced weight loss. The best parameter was achieved for MAP and DAP (15% weight loss).

No Thumbnail Available
Publication

Impact of Cellulose Modification by Expandable Graphite andCarbon Nanotubes on Flammability and Thermal Properties

2024, Grześkowiak, Wojciech, Treu, Andreas, Mazela, Bartłomiej, Fongen, Monica