Płyta komórkowa HDF z rdzeniem falistym i sposób wytwarzania płyty HDF z rdzeniem falistym
2020, JERZY SMARDZEWSKI, TADEUSZ KAMISIŃSKI, WOJCIECH BATKO, DOROTA DZIURKA, RADOSŁAW MIRSKI, ARTUR FLACH, ADAM PILCH, ADAM MAJEWSKI, EDWARD ROSZYK
The effect of storage conditions on the strength characteristic of glulam beams
2023, Mirski, Radosław, Kuliński, Marcin, Kawalerczyk, Jakub, Walkiewicz, Joanna, Czarnecki, Rafał
Despite many outdoors applications, the number of works aimed to determine the effect of changing conditions on the properties of glulam beams, in particular those produced in non-standard arrangements, is few. Therefore, the aim of this study was to assess changes in flexural strength properties (MOE, MOR) of the beams stored for 30 months in varying conditions. Analyzed variants of pine GLT beams included five-meter-long structural elements reinforced with oak timber, high-quality pine timber and steel rods stored both in the roofed shed outdoors and inside the climatic chamber. Moisture content of the beam varied significantly depending on the placement of the sensors (on the surface or inside the beam). The average modulus of elasticity after 30 months of storage decreased by approx. 7% compared to initial values. The results varied depending on both the assumed beam arrangement and the applied conditions.
Possibility of Using Wind Turbine Waste in Particleboard Manufacturing
2024, Derkowski, Adam, Dziurka, Dorota, Antonowicz, Ryszard, Chuda-Kowalska, Monika, Mirski, Radosław
Recent reports indicate that the development of electricity generation using wind turbines will continue to grow. Despite the long service life of wind turbine blades, their technological life comes to an end at a certain point. Currently, there is no industrial method for recycling them, and the proposed solutions need to consider a complete and comprehensive approach to this material. In many countries, these blades are stored in special landfills and await proposals for rational recycling. It has been proposed that this recyclable yet still troublesome raw material be used in building sheathing boards. Sheathing boards used in the construction industry have a relatively long lifecycle. Three types of polymer chips and two resins, i.e., PF and MUF, were used in the study. The boards’ quality was assessed per the standards specified for particle boards. The resulting boards were characterized by strengths above 20 N/mm2 and an elastic modulus close to 4000 N/mm2. Slightly better results were obtained with the MUF resin.
The Effect of Treatment with Fire Retardant on Properties of Birch Veneer and Manufactured Fire-Resistant Plywood
2023, Kawalerczyk, Jakub, Dziurka, Dorota, Pinkowski, Grzegorz, Stachowiak-Wencek, Agata, Walkiewicz, Joanna, Mirski, Radosław
Nanocellulose functionalized with ethylenediamine as a modifier of urea-formaldehyde adhesive in particleboard production
2025, Kawalerczyk, Jakub, Dziurka, Dorota, Dukarska, Dorota, Mirski, Radosław
The effect of impregnation with fire retardant on the properties of particleboard bonded with PF/pMDI adhesive
2024, Kawalerczyk, Jakub, Dziurka, Dorota, Majlingová, Andrea, Lieskovský, Martin, Walkiewicz, Joanna, Mirski, Radosław
Modification of Urea-Formaldehyde Resin with Triethylenetetramine: Effect on Adhesive Properties and Plywood Strength
2025, Kawalerczyk, Jakub, Dukarska, Dorota, Góral, Błażej, Antov, Petar, Dziurka, Dorota, Mirski, Radosław
Due to its multiple amino groups, triethylenetetramine (TETA) can be used as an effective formaldehyde scavenger contributing to the reduction in formaldehyde emission from plywood. This study aimed to evaluate the effect of small TETA loadings on the properties of urea-formaldehyde (UF) resin and the performance of the resulting plywood. Adhesive mixtures containing 0%, 0.5%, 1.0%, and 1.5% TETA were prepared and characterized in terms of pH, viscosity, solids content, and gel time. The incorporation of TETA significantly increased adhesive pH and gel time, while viscosity and solid content were not significantly affected. The analysis of formaldehyde content and spectroscopic and thermogravimetric analyses of the cured adhesives showed reduced formaldehyde content, changes in chemical structure, and enhanced thermal stability at lower temperatures but accelerated degradation at higher temperatures. Formaldehyde emission from plywood was reduced; however, bonding quality and mechanical performance decreased with higher TETA content. Nevertheless, the wet shear strength of all variants exceeded 1 N/mm2. Adhesive formulation containing 0.5% TETA was selected as the optimal variant, providing environmental benefits while maintaining satisfactory plywood performance.
Akustyczna płyta komórkowa HDF z rdzeniem falistym oraz sposób wytwarzania płyty komórkowej HDF z rdzeniem falistym
2018, JERZY SMARDZEWSKI, TADEUSZ KAMISIŃSKI, WOJCIECH BATKO, DOROTA DZIURKA, RADOSŁAW MIRSKI, ARTUR FLACH, ADAM PILCH, ADAM MAJEWSKI, EDWARD ROSZYK
Akustyczna płyta komórkowa z rdzeniem listewkowym oraz sposób wytwarzania akustycznej płyty komórkowej z rdzeniem listewkowym
2019, JERZY SMARDZEWSKI, TADEUSZ KAMISIŃSKI, WOJCIECH BATKO, DOROTA DZIURKA, RADOSŁAW MIRSKI, ARTUR FLACH, ADAM PILCH, ADAM MAJEWSKI, EDWARD ROSZYK
Modified Buckwheat Husk as a Filler for Urea–Formaldehyde Resin in Plywood Production
2024, Kawalerczyk, Jakub, Walkiewicz, Joanna, Sedliačik, Ján, Dukarska, Dorota, Woźniak, Magdalena, Mirski, Radosław
The aim of the presented research was to determine the suitability of both non-modified and modified buckwheat husk (BH) as a filler for urea–formaldehyde adhesive in plywood production. The effect of two modification methods, acetylation and silanization, was investigated. Infrared spectroscopy outcomes confirmed that both acetylation and silanization of the filler had occurred. Based on the results, it was found that the introduction of BH had a significant effect on both the adhesive properties and the characteristics of the manufactured plywood. The application of non-modified husks led to a reduction in viscosity and an extension of the gelation time, and the produced plywood boards were characterized by reduced bonding quality and increased delamination. Modification of the husk surface by acetylation and silanization with 3-aminopropyltriethoxysilane contributed to the noticeable improvement in the resin properties. On the other hand, the improvement in plywood properties, consisting of the increase in bonding quality and reduced delamination, was observed only in the case of the silanized husk. Furthermore, the use of non-modified and acetylated husk did not significantly influence the formaldehyde emission. The reduction in the investigated emission of formaldehyde was observed only in the case of variants containing 15 and 20% of silanized buckwheat husk.
Physico-Mechanical Characteristics of Gypsum–Fiber Boards Manufactured with Hydrophobically Impregnated Fibers
2024, Trociński, Adrian, Dziurka, Dorota, Thomas, Marta, Mirski, Radosław
Although gypsum-based building materials exhibit many positive characteristics, solutions are still being searched for to reduce the use of gypsum or improve the physico-mechanical properties of board materials. In this study, an attempt was made to produce gypsum boards with hemp fibers. Although hemp fibers can be a specific reinforcement for gypsum-based board materials, they negatively affect the gypsum setting process due to their hygroscopic characteristics. Fibers impregnated with derivatives based on polyvinyl acetate, styrene–acrylic copolymer and pMDI (polymeric diphenylmethane diisocyanate) were used in this study. Gypsum–fiber boards produced with impregnated fibers showed approximately 30% higher mechanical properties as determined by the 3-point bending test. The positive effect of the impregnates on the hemp fibers was confirmed by FTIR (Fourier-transform infrared spectroscopy) and TG/DTA (thermogravimetric analysis/thermal gravimetric analysis) analysis.
Properties of fiber-gypsum composite formed on the basis of hemp (Cannabis sativa L.) fibers grown in Poland and natural gypsum
2023, Trociński, Adrian, Wieruszewski, Marek, Kawalerczyk, Jakub, Mirski, Radosław
: Properties of fiber-gypsum composite formed on the basis of hemp (Cannabis sativa L.) fibers grown in Poland and natural gypsum. The popularity of composites reinforced with natural fibers is constantly growing and therefore, they are a subject of many scientific works as well. An example of interesting concept is the use of hemp fibers to reinforce a gypsum matrix and therefore, presented study was aimed to determine the effect of their content on the properties of resultant composites. Moreover, the influence of setting temperature was also investigated. The scope of the research included determination of properties such as: density, setting time, bending strength, modulus of elasticity and thermal conductivity coefficient. Studies have shown that as the amount introduced fibers increases, the density of manufactured composites decreases. Furthermore, increase in the content of hemp causes a significant extension in setting time of the gypsum matrix. Based on the outcomes of mechanical properties, it was found that the optimal content of fibers is 4% and further increase in their share results in a deterioration of flexural strength characteristics. The increase in a setting temperature leads to thereduction in their bending strength and modulus of elasticity. Composites reinforced with hemp fibers demonstrate significantly improved thermal insulation properties
Coffee silverskin and cocoa pod husk modified with methacrylic acid as fillers for the urea-formaldehyde resin in plywood production
2025, Kawalerczyk, Jakub, Hoffmann, Maciej, Ekwińska, Maria, Stuper-Szablewska, Kinga, Woźniak, Magdalena, Mirski, Radosław
Experimental Analysis of Bonding in Steel Glued into Pine Timber
2024, Derkowski, Adam, Chuda-Kowalska, Monika, Kawalerczyk, Jakub, Dziurka, Dorota, Mirski, Radosław
Combining steel with wood has been practised for many years. The issue is related to two main areas, i.e., bonding steel elements with wood so that they serve as connectors facilitating the assembly of wood elements and bonding steel elements to wood beams to improve their load-bearing capacity. In the first case, the adhesives used may be relatively expensive and more difficult to apply, whereas in the second one, especially when steel elements are glued inside the glulam (GL) beams, it is better if the adhesives used are more accessible to apply and cheaper. As it seems rational to reinforce wood with high-modulus ties, research has been carried out to compare the connection quality of commercially available adhesives that can be used for this purpose. Moreover, thermosetting adhesives have been applied as an alternative and cheaper solution. Thermostat adhesives also have a high pH of the bond, which prevents the steel from rusting. The research shows that the load-bearing capacity of the bond depends on whether the bars are ribbed or sheet metal. Moreover, among thermosetting adhesives, the most favourable load-bearing values were obtained using a mixture of PF/pMDI (phenol formaldehyde resin/polymeric diphenylmethane diisocyanate) and powder from recycled tyres. The shear strength of these joints was 1.63 N/mm2 and 3.14 N/mm2 for flat specimens and specimens with ribbed bars, respectively.
Selected Chemical and Physical Properties of Pine Wood Chips Inoculated with Aspergillus and Penicillium Mold Fungi
2023, Mirski, Radosław, Kawalerczyk, Jakub, Dziurka, Dorota, Stuper-Szablewska, Kinga, Walkiewicz, Joanna
Mold fungi representing genera of Penicillium and Aspergillus commonly develop on the surface of freshly harvested wood chips during storage. As a result, they are often considered as low-quality material and intended for incineration. Thus, the aim of the present study was to investigate the effect of wood chips infestation with mold fungi representing genera of Aspergillus and Penicillium on their basic chemical and physical properties, such as: chemical structure (evaluated with FTIR spectroscopy), mass loss and hygroscopicity, after an incubation of 3, 6 and 9 weeks. Based on the visual assessment and ergosterol content analysis, it was found that inoculation of wood chips with molds led to the intense fungal development on their surface. However, as observed in FTIR spectra, the presence of molds caused no changes in wood chemical structure. Furthermore, no mass loss and no significant increase in the hygroscopicity of wood were observed. Therefore, pine wood chips overgrown by studied genera of fungi seem to be a valuable material for various applications.
Optimization of Isocyanate Content in PF/pMDI Adhesive for the Production of High-Performing Particleboards
2023, Kawalerczyk, Jakub, Dukarska, Dorota, Barczewski, Mateusz, Dziurka, Dorota, Mirski, Radosław
Due to the fact that impregnation with fire retardant usually reduces the strength of the produced particleboards, this research was carried out to investigate whether it is possible to use phenol–formaldehyde (PF) resin modified using various amounts (0%, 5%, 10%, 15%, and 20%) of polymeric 4,4′-methylene diphenyl diisocyanate (pMDI) for this purpose. The need to optimize the addition of pMDI is particularly important due to health and environmental aspects and high price. Furthermore, the curing process of hybrid resins is still not fully explained, especially in the case of small loadings. Manufactured particleboards differed in the share of impregnated particles (50% and 100%). The mixture of potassium carbonate and urea was used as the impregnating solution. Based on the outcomes of hybrid resins properties, it was found that the addition of pMDI leads to the increase in solid content, pH, and viscosity of the mixtures, to the improvement in resin reactivity determined using differential scanning calorimetry and to the decrease in thermal stability in the cured state evaluated using thermogravimetric analysis. Moreover, particleboard property results have shown that using impregnated particles (both 50% and 100%) decreased the strength of manufactured boards bonded using neat PF resin. However, the introduction of pMDI allowed us to compensate for the negative impact of fire-retardant-treated wood and it was found that the optimal loading of pMDI for the board containing 50% of impregnated particles is 5% and for board made entirely of treated wood it is 10%.
Wood Particles of Various Sizes from Primary Wood Processing as Filler in Rigid Polyurethane Foams
2025, Walkiewicz, Joanna, Dukarska, Dorota, Mirski, Radosław
Advanced Technologies in Physical and Mechanical Wood Modification
2025, Dziurka, Dorota, Mirski, Radosław
In recent years, research on wood modification, wood composites, and the use of renewable raw materials and plant industry by-products in materials engineering has grown dynamically [...]
The Influence of Hemp Fibers (Cannabis sativa L.) on the Mechanical Properties of Fiber–Gypsum Boards Reinforcing the Gypsum Matrix
2024, Trociński, Adrian, Wieruszewski, Marek, Bartkowiak, Monika Karolina, Dziurka, Dorota, Mirski, Radosław
The modern construction industry is looking for new ecological materials (available, cheap, recyclable) that can successfully replace materials that are not environmentally friendly. Fibers of natural origin are materials that can improve the properties of gypsum composites. This is an important issue because synthetic fibers (hardly biodegradable—glass or polypropylene fibers) are commonly used to reinforce gypsum boards. Increasing the state of knowledge regarding the possibility of replacing synthetic fibers with natural fibers is another step towards creating more environmentally friendly building materials and determining their characteristics. This paper investigates the possibility of manufacturing fiber–gypsum composites based on natural gypsum (building gypsum) and hemp (Cannabis sativa L.) fibers grown in Poland. The effect of introducing hemp fibers of different lengths and with varying proportions of mass (mass of gypsum to mass of fibers) into the gypsum matrix was investigated. The experimental data obtained indicate that adding hemp fibers to the gypsum matrix increases the static bending strength of the composites manufactured. The highest mechanical strength, at 4.19 N/mm2, was observed in fiber–gypsum composites with 4% hemp fiber content at 50 mm in length. A similar trend of increased strength was observed in longitudinal tension. Again, the composite variant with 4% fiber content within the gypsum matrix had the highest mechanical strength. Manufacturing fibers–gypsum composites with more than 4% hemp fiber content negatively affected the composites’ strength. Mixing long (50 mm) hemp fibers with the gypsum matrix is technologically problematic, but tests have shown a positive effect on the mechanical properties of the refined composites. The article indicates the length and quantity limitations of hemp fibers on the basis of which fiber–gypsum composites were produced.