Now showing 1 - 3 of 3
No Thumbnail Available
Publication

Prediction of Blueberry (Vaccinium corymbosum L.) Yield Based on Artificial Intelligence Methods

2022, Niedbała, Gniewko, Kurek, Jarosław, Świderski, Bartosz, Wojciechowski, Tomasz, Antoniuk, Izabella, Bobran, Krzysztof

In this paper, we present a high-accuracy model for blueberry yield prediction, trained using structurally innovative data sets. Blueberries are blooming plants, valued for their antioxidant and anti-inflammatory properties. Yield on the plantations depends on several factors, both internal and external. Predicting the accurate amount of harvest is an important aspect in work planning and storage space selection. Machine learning algorithms are commonly used in such prediction tasks, since they are capable of finding correlations between various factors at play. Overall data were collected from years 2016–2021, and included agronomic, climatic and soil data as well satellite-imaging vegetation data. Additionally, growing periods according to BBCH scale and aggregates were taken into account. After extensive data preprocessing and obtaining cumulative features, a total of 11 models were trained and evaluated. Chosen classifiers were selected from state-of-the-art methods in similar applications. To evaluate the results, Mean Absolute Percentage Error was chosen. It is superior to alternatives, since it takes into account absolute values, negating the risk that opposite variables will cancel out, while the final result outlines percentage difference between the actual value and prediction. Regarding the research presented, the best performing solution proved to be Extreme Gradient Boosting algorithm, with MAPE value equal to 12.48%. This result meets the requirements of practical applications, with sufficient accuracy to improve the overall yield management process. Due to the nature of machine learning methodology, the presented solution can be further improved with annually collected data.

No Thumbnail Available
Publication

Prediction of Potato (Solanum tuberosum L.) Yield Based on Machine Learning Methods

2023, Kurek, Jarosław, Niedbała, Gniewko, Wojciechowski, Tomasz, Świderski, Bartosz, Antoniuk, Izabella, Piekutowska, Magdalena, Kruk, Michał, Bobran, Krzysztof

This research delves into the application of machine learning methods for predicting the yield of potato varieties used for French fries in Poland. By integrating a comprehensive dataset comprising agronomical, climatic, soil, and satellite-based vegetation data from 36 commercial potato fields over five growing seasons (2018–2022), we developed three distinct models: non-satellite, satellite, and hybrid. The non-satellite model, relying on 85 features, excludes vegetation indices, whereas the satellite model includes these indices within its 128 features. The hybrid model, combining all available features, encompasses a total of 165 features, presenting the most-comprehensive approach. Our findings revealed that the hybrid model, particularly when enhanced with SVM outlier detection, exhibited superior performance with the lowest Mean Absolute Percentage Error (MAPE) of 5.85%, underscoring the effectiveness of integrating diverse data sources into agricultural yield prediction. In contrast, the non-satellite and satellite models displayed higher MAPE values, indicating less accuracy compared to the hybrid model. Advanced data-processing techniques such as PCA and outlier detection methods (LOF and One-Class SVM) played a pivotal role in model performance, optimising feature selection and dataset refinement. The study concluded that machine learning methods, particularly when leveraging a multifaceted approach involving a wide array of data sources and advanced processing techniques, can significantly enhance the accuracy of agricultural yield predictions. These insights pave the way for more-efficient and -informed agricultural practices, emphasising the potential of machine learning in revolutionising yield prediction and crop management.

No Thumbnail Available
Publication

Comparative Evaluation of CNN and Transformer Architectures for Flowering Phase Classification of Tilia cordata Mill. with Automated Image Quality Filtering

2025, Arct, Bogdan, Świderski, Bartosz, Różańska , Monika A., Chojnicki, Bogdan, Wojciechowski, Tomasz, Niedbała, Gniewko, Kruk, Michał, Bobran, Krzysztof, Kurek, Jarosław

Understanding and monitoring the phenological phases of trees is essential for ecological research and climate change studies. In this work, we present a comprehensive evaluation of state-of-the-art convolutional neural networks (CNNs) and transformer architectures for the automated classification of the flowering phase of Tilia cordata Mill. (small-leaved lime) based on a large set of real-world images acquired under natural field conditions. The study introduces a novel, automated image quality filtering approach using an XGBoost classifier trained on diverse exposure and sharpness features to ensure robust input data for subsequent deep learning models. Seven modern neural network architectures, including VGG16, ResNet50, EfficientNetB3, MobileNetV3 Large, ConvNeXt Tiny, Vision Transformer (ViT-B/16), and Swin Transformer Tiny, were fine-tuned and evaluated under a rigorous cross-validation protocol. All models achieved excellent performance, with cross-validated F1-scores exceeding 0.97 and balanced accuracy up to 0.993. The best results were obtained for ResNet50 and ConvNeXt Tiny (F1-score: 0.9879 ± 0.0077 and 0.9860 ± 0.0073, balanced accuracy: 0.9922 ± 0.0054 and 0.9927 ± 0.0042, respectively), indicating outstanding sensitivity and specificity for both flowering and non-flowering classes. Classical CNNs (VGG16, ResNet50, and ConvNeXt Tiny) demonstrated slightly superior robustness compared to transformer-based models, though all architectures maintained high generalization and minimal variance across folds. The integrated quality assessment and classification pipeline enables scalable, high-throughput monitoring of flowering phases in natural environments. The proposed methodology is adaptable to other plant species and locations, supporting future ecological monitoring and climate studies. Our key contributions are as follows: (i) introducing an automated exposure-quality filtering stage for field imagery; (ii) publishing a curated, season-long dataset of Tilia cordata images; and (iii) providing the first systematic cross-validated benchmark that contrasts classical CNNs with transformer architectures for phenological phase recognition.