Szanowni Państwo, w związku z bardzo dużą ilością zgłoszeń, rejestracją danych w dwóch systemach bibliograficznych, a jednocześnie zmniejszonym zespołem redakcyjnym proces rejestracji i redakcji opisów publikacji jest wydłużony. Bardzo przepraszamy za wszelkie niedogodności i dziękujemy za Państwa wyrozumiałość.
Repository logoRepository logoRepository logoRepository logo
Repository logoRepository logoRepository logoRepository logo
  • Communities & Collections
  • Research Outputs
  • Employees
  • AAAHigh contrastHigh contrast
    EN PL
    • Log In
      Have you forgotten your password?
AAAHigh contrastHigh contrast
EN PL
  • Log In
    Have you forgotten your password?
  1. Home
  2. Bibliografia UPP
  3. Bibliografia UPP
  4. Comparative Evaluation of CNN and Transformer Architectures for Flowering Phase Classification of Tilia cordata Mill. with Automated Image Quality Filtering
 
Full item page
Options

Comparative Evaluation of CNN and Transformer Architectures for Flowering Phase Classification of Tilia cordata Mill. with Automated Image Quality Filtering

Type
Journal article
Language
English
Date issued
2025
Author
Arct, Bogdan
Świderski, Bartosz
Różańska , Monika A.
Chojnicki, Bogdan 
Wojciechowski, Tomasz 
Niedbała, Gniewko 
Kruk, Michał
Bobran, Krzysztof
Kurek, Jarosław
Faculty
Wydział Inżynierii Środowiska i Inżynierii Mechanicznej
PBN discipline
mechanical engineering
Journal
Sensors
ISSN
1424-8220
DOI
10.3390/s25175326
Web address
https://www.mdpi.com/1424-8220/25/17/5326
Volume
25
Number
17
Pages from-to
art. 5326
Abstract (EN)
Understanding and monitoring the phenological phases of trees is essential for ecological research and climate change studies. In this work, we present a comprehensive evaluation of state-of-the-art convolutional neural networks (CNNs) and transformer architectures for the automated classification of the flowering phase of Tilia cordata Mill. (small-leaved lime) based on a large set of real-world images acquired under natural field conditions. The study introduces a novel, automated image quality filtering approach using an XGBoost classifier trained on diverse exposure and sharpness features to ensure robust input data for subsequent deep learning models. Seven modern neural network architectures, including VGG16, ResNet50, EfficientNetB3, MobileNetV3 Large, ConvNeXt Tiny, Vision Transformer (ViT-B/16), and Swin Transformer Tiny, were fine-tuned and evaluated under a rigorous cross-validation protocol. All models achieved excellent performance, with cross-validated F1-scores exceeding 0.97 and balanced accuracy up to 0.993. The best results were obtained for ResNet50 and ConvNeXt Tiny (F1-score: 0.9879 ± 0.0077 and 0.9860 ± 0.0073, balanced accuracy: 0.9922 ± 0.0054 and 0.9927 ± 0.0042, respectively), indicating outstanding sensitivity and specificity for both flowering and non-flowering classes. Classical CNNs (VGG16, ResNet50, and ConvNeXt Tiny) demonstrated slightly superior robustness compared to transformer-based models, though all architectures maintained high generalization and minimal variance across folds. The integrated quality assessment and classification pipeline enables scalable, high-throughput monitoring of flowering phases in natural environments. The proposed methodology is adaptable to other plant species and locations, supporting future ecological monitoring and climate studies. Our key contributions are as follows: (i) introducing an automated exposure-quality filtering stage for field imagery; (ii) publishing a curated, season-long dataset of Tilia cordata images; and (iii) providing the first systematic cross-validated benchmark that contrasts classical CNNs with transformer architectures for phenological phase recognition.
Keywords (EN)
  • deep learning

  • convolutional neural networks

  • vision transformer

  • automated image quality assessme...

  • Tilia cordata

  • flowering phase classification

  • ecological monitoring

License
cc-bycc-by CC-BY - Attribution
Open access date
August 27, 2025
Fundusze Europejskie
  • About repository
  • Contact
  • Privacy policy
  • Cookies

Copyright 2025 Uniwersytet Przyrodniczy w Poznaniu

DSpace Software provided by PCG Academia