Now showing 1 - 3 of 3
No Thumbnail Available
Publication

Predicting Starch Content in Early Potato Varieties Using Neural Networks and Regression Models: A Comparative Study

2024, Piekutowska, Magdalena, Hara, Patryk, Pentoś, Katarzyna, Lenartowicz, Tomasz, Wojciechowski, Tomasz, Kujawa, Sebastian, Niedbała, Gniewko

Starch content serves as a crucial indicator of the quality and palatability of potato tubers. It has become a common practice to evaluate the polysaccharide content directly in tubers freshly harvested from the field. This study aims to develop models that can predict starch content prior to the harvesting of potato tubers. Very early potato varieties were cultivated in the northern and northwestern regions of Poland. The research involved constructing multiple linear regression (MLR) and artificial neural network (ANN-MLP) models, drawing on data from eight years of field trials. The independent variables included factors such as sunshine duration, average daily air temperatures, precipitation, soil nutrient levels, and phytophenological data. The NSM demonstrated a higher accuracy in predicting the dependent variable compared to the RSM, with MAPE errors of 7.258% and 9.825%, respectively. This study confirms that artificial neural networks are an effective tool for predicting starch content in very early potato varieties, making them valuable for monitoring potato quality.

No Thumbnail Available
Publication

Somaclonal Variation for Genetic Improvement of Starch Accumulation in Potato (Solanum tuberosum) Tubers

2023, Adly, Walaa M. R. M., Niedbała, Gniewko, EL-Denary, Mohammad E., Mohamed, Mahasen A., Piekutowska, Magdalena, Wojciechowski, Tomasz, Abd El-Salam, El-Sayed T., Fouad, Ahmed S.

Starch content is one of the major quality criteria targeted by potato breeding programs. Traditional potato breeding is a laborious duty due to the tetraploid nature and immense heterozygosity of potato genomes. In addition, screening for functional genetic variations in wild relatives is slow and strenuous. Moreover, genetic diversity, which is the raw material for breeding programs, is limited due to vegetative propagation used in the potato industry. Somaclonal variation provides a time-efficient tool to breeders for obtaining genetic variability, which is essential for breeding programs, at a reasonable cost and independent of sophisticated technology. The present investigation aimed to create potato somaclones with an improved potential for starch accumulation. Based on the weight and starch content of tubers, the somaclonal variant Ros 119, among 105 callus-sourced clones, recorded a higher tuberization potential than the parent cv Lady Rosetta in a field experiment. Although this somaclone was similar to the parent in the number of tubers produced, it exhibited tubers with 42 and 61% higher fresh and dry weights, respectively. Additionally, this clone recorded 10 and 75% increases in starch content based on the dry weight and average content per plant, respectively. The enhanced starch accumulation was associated with the upregulation of six starch-synthesis-related genes, namely, the AGPase, GBSS I, SBE I, SBE II, SS II and SS III genes. AGPase affords the glycosyl moieties required for the synthesis of amylose and amylopectin. GBSS is required for amylose elongation, while SBE I, SBE II, SS II and SS III are responsible for amylopectin.

No Thumbnail Available
Publication

Prediction of Potato (Solanum tuberosum L.) Yield Based on Machine Learning Methods

2023, Kurek, Jarosław, Niedbała, Gniewko, Wojciechowski, Tomasz, Świderski, Bartosz, Antoniuk, Izabella, Piekutowska, Magdalena, Kruk, Michał, Bobran, Krzysztof

This research delves into the application of machine learning methods for predicting the yield of potato varieties used for French fries in Poland. By integrating a comprehensive dataset comprising agronomical, climatic, soil, and satellite-based vegetation data from 36 commercial potato fields over five growing seasons (2018–2022), we developed three distinct models: non-satellite, satellite, and hybrid. The non-satellite model, relying on 85 features, excludes vegetation indices, whereas the satellite model includes these indices within its 128 features. The hybrid model, combining all available features, encompasses a total of 165 features, presenting the most-comprehensive approach. Our findings revealed that the hybrid model, particularly when enhanced with SVM outlier detection, exhibited superior performance with the lowest Mean Absolute Percentage Error (MAPE) of 5.85%, underscoring the effectiveness of integrating diverse data sources into agricultural yield prediction. In contrast, the non-satellite and satellite models displayed higher MAPE values, indicating less accuracy compared to the hybrid model. Advanced data-processing techniques such as PCA and outlier detection methods (LOF and One-Class SVM) played a pivotal role in model performance, optimising feature selection and dataset refinement. The study concluded that machine learning methods, particularly when leveraging a multifaceted approach involving a wide array of data sources and advanced processing techniques, can significantly enhance the accuracy of agricultural yield predictions. These insights pave the way for more-efficient and -informed agricultural practices, emphasising the potential of machine learning in revolutionising yield prediction and crop management.