Szanowni Państwo, w związku z bardzo dużą ilością zgłoszeń, rejestracją danych w dwóch systemach bibliograficznych, a jednocześnie zmniejszonym zespołem redakcyjnym proces rejestracji i redakcji opisów publikacji jest wydłużony. Bardzo przepraszamy za wszelkie niedogodności i dziękujemy za Państwa wyrozumiałość.
Repository logoRepository logoRepository logoRepository logo
Repository logoRepository logoRepository logoRepository logo
  • Communities & Collections
  • Research Outputs
  • Employees
  • AAAHigh contrastHigh contrast
    EN PL
    • Log In
      Have you forgotten your password?
AAAHigh contrastHigh contrast
EN PL
  • Log In
    Have you forgotten your password?
  1. Home
  2. Bibliografia UPP
  3. Bibliografia UPP
  4. Predicting Starch Content in Early Potato Varieties Using Neural Networks and Regression Models: A Comparative Study
 
Full item page
Options

Predicting Starch Content in Early Potato Varieties Using Neural Networks and Regression Models: A Comparative Study

Type
Journal article
Language
English
Date issued
2024
Author
Piekutowska, Magdalena
Hara, Patryk
Pentoś, Katarzyna
Lenartowicz, Tomasz
Wojciechowski, Tomasz 
Kujawa, Sebastian 
Niedbała, Gniewko 
Faculty
Wydział Inżynierii Środowiska i Inżynierii Mechanicznej
PBN discipline
mechanical engineering
Journal
Agronomy
ISSN
2073-4395
DOI
10.3390/agronomy14123010
Web address
https://www.mdpi.com/2073-4395/14/12/3010
Volume
14
Number
12
Pages from-to
art. 3010
Abstract (EN)
Starch content serves as a crucial indicator of the quality and palatability of potato tubers. It has become a common practice to evaluate the polysaccharide content directly in tubers freshly harvested from the field. This study aims to develop models that can predict starch content prior to the harvesting of potato tubers. Very early potato varieties were cultivated in the northern and northwestern regions of Poland. The research involved constructing multiple linear regression (MLR) and artificial neural network (ANN-MLP) models, drawing on data from eight years of field trials. The independent variables included factors such as sunshine duration, average daily air temperatures, precipitation, soil nutrient levels, and phytophenological data. The NSM demonstrated a higher accuracy in predicting the dependent variable compared to the RSM, with MAPE errors of 7.258% and 9.825%, respectively. This study confirms that artificial neural networks are an effective tool for predicting starch content in very early potato varieties, making them valuable for monitoring potato quality.
Keywords (EN)
  • starch content

  • potato

  • prediction

  • artificial neural networks

  • multiple linear regression

License
cc-bycc-by CC-BY - Attribution
Open access date
December 18, 2024
Fundusze Europejskie
  • About repository
  • Contact
  • Privacy policy
  • Cookies

Copyright 2025 Uniwersytet Przyrodniczy w Poznaniu

DSpace Software provided by PCG Academia