Now showing 1 - 12 of 12
No Thumbnail Available
Research Project

Rola mitochondrialnego peptydu MOTS-c w funkcjonowaniu trzustki i tkanki tłuszczowej

No Thumbnail Available
Publication

MOTS-c modulates pancreatic islet function in rats and pigs in vitro

2025, Bień, Jakub, Pruszyńska-Oszmałek, Ewa, Kołodziejski, Paweł, Leciejewska, Natalia, Szczepankiewicz, Dawid, Grzęda, Emilia, Sassek, Maciej

Abstract MOTS-c is a promising regulator of metabolism and energy homeostasis. While its effects have been studied in cell lines, our team aimed to investigate its influence on more complex structures—specifically, isolated pancreatic islets. We used two animal models: the rat, which is commonly studied, and the pig, which shares greater physiological similarities with humans. This study assessed the expression and secretion of insulin and glucagon, the expression of their receptors, cell viability, and cell death following MOTS-c treatment of the islets. Additionally, we examined how MOTS-c secretion is affected by different incubation media, such as the presence of free fatty acids, pancreatic hormones, and different glucose concentrations. The results indicate that MOTS-c impacts pancreatic islet physiology by, for example, reducing insulin and glucagon secretion and enhancing cell viability. Notably, the effects differed between the two species, which may be attributed to anatomical differences in their pancreatic islets or structural variations in rat and pig MOTS-c. These facts may lead to the conclusion that if MOTS-c may be helpful in human medicine, the pig model should be considered another valuable choice.

No Thumbnail Available
Publication

Cord Blood Spexin Level in Mothers with Obesity—Forecast of Future Obesity?

2023, Wojciechowska, Malgorzata, Kołodziejski, Paweł, Pruszyńska-Oszmałek, Ewa, Leciejewska, Natalia, Krauss, Hanna, Checinska-Maciejewska, Zuzanna, Sassek, Maciej, Rekas-Dudziak, Anna, Bernatek, Malgorzata, Skrzypski, Marek, Wilczak, Maciej

Spexin (SPX) is a peptide that plays an important role in the regulation of food intake and body weight (BW) by the effect on carbohydrate-lipid metabolism. However, the role of SPX in fetal life, in children, and in adolescent metabolism is limited. Therefore, we decided to check whether obesity affects the concentration of SPX in the mother’s peripheral blood (MB) and umbilical cord blood (UCB). Using MB and UCB sera on the day of delivery obtained from 48 women (24 non-obese and 24 obese) and commercially available Elisa kits and colorimetric assays, we determined changes in SPX and the relationship between SPX concentration and other metabolic and anthropometric markers (body weight and BMI) on the day of delivery and in children at the age of 36 months. We found lower concentrations of SPX in MB (p < 0.05) and UCB (p < 0.01) derived from obese women (BMI > 30) and a moderate linear correlation (r = 0.4429; p < 0.01) between SPX concentrations in MB and UCB. We also noted that the concentration of SPX is not correlated with the child’s body weight on the day of birth (r = −0.0128). However, there is a relationship between SPX at birth and body weight at 3 years of age (r = −0.3219; p < 0.05). Based on the obtained results, it can be assumed that spexin is one of the factors modulating the child’s metabolism already in the fetal period and can be considered a potential marker of future predisposition to obesity. However, confirmation of this thesis requires additional research.

No Thumbnail Available
Publication

Isolation method and characterization of adipocytes as a tool for equine obesity research – In vitro study

2025, Kołodziejski, Paweł Antoni, Leciejewska, Natalia, Sassek, Maciej, Nogowski, Leszek, Szumacher, Małgorzata, Mikuła, Robert, Gogulski, Maciej, Pruszyńska-Oszmałek, Ewa

No Thumbnail Available
Research Project

Rola speksyny w funkcjonowaniu endokrynnym trzustki różnych gatunków

No Thumbnail Available
Publication

MOTS-c regulates pancreatic alpha and beta cell functions in vitro

2024, Bień, Jakub, Pruszyńska-Oszmałek, Ewa, Kołodziejski, Paweł Antoni, Leciejewska, Natalia, Szczepankiewicz, Dawid, Sassek, Maciej

AbstractThe aim of this study is to determine the influence of the mitochondrial open-reading-frame of the twelve S rRNA-c (MOTS-c) peptide on pancreatic cell physiology. Moreover, in this study, we examined the changes in MOTS-c secretion and expression under different conditions. Our experiments were conducted using laboratory cell line cultures, specifically the INS-1E and αTC-1 cell lines, which represent β and α pancreatic cells, respectively. As the pancreas is an endocrine organ, we also tested its hormone regulation capabilities. Furthermore, we assessed the secretion of MOTS-c after incubating the cells with glucose and free fatty acids. Additionally, we examined key cell culture parameters such as cell viability, proliferation, and apoptosis. The results obtained from this study show that MOTS-c has a significant impact on the physiology of pancreatic cells. Specifically, it lowers insulin secretion and expression in INS-1E cells and enhances glucagon secretion and expression in αTC-1 cells. Furthermore, MOTS-c affects cell viability and apoptosis. Interestingly, insulin and glucagon affect the MOTS-c secretion as well as glucose and free fatty acids. These experiments clearly show that MOTS-c is an important regulator of pancreatic metabolism, and there are numerous properties of MOTS-c yet to be discovered.

No Thumbnail Available
Publication

Impact of Lactobacillus acidophilus and Its Combination with Isoflavone Products on Calcium Status, Calcium Transporters, and Bone Metabolism Biomarkers in a Post-Menopausal Osteoporotic Rat Model

2024, Harahap, Iskandar Azmy, Schmidt, Marcin, Pruszyńska-Oszmałek, Ewa, Sassek, Maciej, Suliburska, Joanna

Osteoporosis in menopausal women requires alternatives to current medications, considering their adverse effects. In this context, probiotics and isoflavone products are promising dietary interventions. The objective of our study was to examine the impacts of Lactobacillus acidophilus and its combination with daidzein and tempeh on calcium status, calcium transporters, and bone metabolism biomarkers in a post-menopausal osteoporotic rat model. A total of 48 female Wistar rats were exposed to a two-stage experiment involving calcium deficit induction and subsequent dietary interventions across six groups. Calcium levels, the gene expression of TRPV5 and TRPV6 calcium transporters, bone histopathology, serum bone metabolism markers, and blood biochemistry were evaluated. The results revealed that, while decreasing serum calcium levels, the groups that received the probiotic L. acidophilus and isoflavone combination exhibited increased bone metabolism biomarkers and decreased calcium transporter expressions, akin to the effects of bisphosphonate. Additionally, significant improvements in bone histopathology were observed in these groups. However, the group receiving probiotic L. acidophilus alone did not exhibit significant changes in bone resorption biomarkers, calcium transporter expression, or various blood parameters. Meanwhile, the combination of probiotic L. acidophilus with tempeh positively influenced hematological parameters and reduced cholesterol and triglyceride levels, but it led to elevated blood glucose levels. Correlation analyses highlighted associations between serum calcium levels, calcium transporter expression, and bone metabolism biomarkers. In conclusion, our findings suggest that the daily consumption of probiotic L. acidophilus in combination with isoflavone products may improve bone health in ovariectomized rats, warranting further research to elucidate potential interactions with other nutrients.

No Thumbnail Available
Publication

MOTS-c Impact on Muscle Cell Differentiation and Metabolism Across Fiber Types

2025, Leciejewska, Natalia, Pruszyńska-Oszmałek, Ewa, Kołodziejski, Paweł Antoni, Szczepankiewicz, Dawid, Nogowski, Leszek, Sassek, Maciej

Background/Aims: MOTS-c belongs to a group of mitochondrial peptides involved in metabolic processes in the body. This peptide has garnered increasing attention since its discovery in 2015 because of its potential to ameliorate metabolic parameters in animals with diabetes or insulin resistance. MOTS-c is involved in muscle metabolism; however, little is known about its role in fiber differentiation. Materials: We conducted a study to explore the effect of MOTS-c on cellular processes using the C2C12 and L6 cell lines, representing different metabolic types of muscle fibers. The research methods were real-time PCR, Western blot, and lipid accumulation measurement. Results: >Notably, our investigations revealed that MOTS-c increased the survival of C2C12 cells at doses of 10 and 100 nM (p<0.01) and stimulated the phosphorylation of extracellular signal-regulated kinase within 5 min of incubation (p<0.05). Remarkably, these effects were not observed in L6 cells; however, both cell lines showed a reduced rate of proliferation. Furthermore, MOTS-c promotes the differentiation of C2C12 cells by increasing the expression of muscle regulatory factors, but it does not produce such an effect in L6 cells. Additionally, cells were treated with physiological concentrations of free fatty acids and MOTS-c, unveiling an augmentation in lipid accumulation observed in L6 cells and a decrease in lipid accumulation in C2C12 cells. Conclusion: In conclusion, our findings have suggested a diverse response to MOTS-c depending on the type of muscle fibers, particularly in the domains of survival, cell differentiation, and lipid accumulation.

No Thumbnail Available
Publication

GIP_HUMAN [22–51] Peptide Encoded by the Glucose-Dependent Insulinotropic Polypeptide (GIP) Gene Suppresses Insulin Expression and Secretion in INS-1E Cells and Rat Pancreatic Islets

2023, Pusch, Emily, Krążek, Małgorzata, Wojciechowicz, Tatiana, Sassek, Maciej, Kołodziejski, Paweł, Strowski, Mathias, Nowak, Krzysztof W., Skrzypski, Marek

GIP_HUMAN [22–51] is a recently discovered peptide that shares the same precursor molecule with glucose-dependent insulinotropic polypeptide (GIP). In vivo, chronic infusion of GIP_HUMAN [22–51] in ApoE−/− mice enhanced the development of aortic atherosclerotic lesions and upregulated inflammatory and proatherogenic proteins. In the present study, we evaluate the effects of GIP_HUMAN [22–51] on insulin mRNA expression and secretion in insulin-producing INS-1E cells and isolated rat pancreatic islets. Furthermore, we characterize the influence of GIP_HUMAN [22–51] on cell proliferation and death and on Nf-kB nuclear translocation. Rat insulin-producing INS-1E cells and pancreatic islets, isolated from male Wistar rats, were used in this study. Gene expression was evaluated using real-time PCR. Cell proliferation was studied using a BrdU incorporation assay. Cell death was quantified by evaluating histone-complexed DNA fragments. Insulin secretion was determined using an ELISA test. Nf-kB nuclear translocation was detected using immunofluorescence. GIP_HUMAN [22–51] suppressed insulin (Ins1 and Ins2) in INS-1E cells and pancreatic islets. Moreover, GIP_HUMAN [22–51] promoted the translocation of NF-κB from cytoplasm to the nucleus. In the presence of a pharmacological inhibitor of NF-κB, GIP_HUMAN [22–51] was unable to suppress Ins2 mRNA expression. Moreover, GIP_HUMAN [22–51] downregulated insulin secretion at low (2.8 mmol/L) but not high (16.7 mmol/L) glucose concentration. By contrast, GIP_HUMAN [22–51] failed to affect cell proliferation and apoptosis. We conclude that GIP_HUMAN [22–51] suppresses insulin expression and secretion in pancreatic β cells without affecting β cell proliferation or apoptosis. Notably, the effects of GIP_HUMAN [22–51] on insulin secretion are glucose-dependent.

No Thumbnail Available
Research Project

Rola mitochondrialnego peptydu MOTS-c w funkcjonowaniu trzustki i tkanki tłuszczowej

No Thumbnail Available
Publication

Isoflavones and probiotics effect on bone calcium and bone cells in rats

2023, Harahap, Iskandar Azmy, Kuligowski, Maciej, Schmidt, Marcin, Kurzawa, Paweł, Pruszyńska-Oszmałek, Ewa, Sassek, Maciej, Suliburska, Joanna

No Thumbnail Available
Publication

LEAP2 in Physiology—A Narrative Review

2025, Sosinski, Oskar, Pruszyńska-Oszmałek, Ewa, Leciejewska, Natalia, Sassek, Maciej, Kołodziejski, Paweł Antoni

Liver Enriched Antimicrobial Peptide 2 (LEAP2) is a fascinating peptide that has gained significant attention since its discovery in 2003. Initially identified as an antimicrobial peptide, LEAP2 has more recently been found to play a key role in the regulation of energy metabolism. One of the most notable functions of LEAP2 is its interaction with the ghrelin hormone, which is known for stimulating hunger. LEAP2 acts as an inhibitor of ghrelin, thereby reducing food intake and influencing energy balance. The physiological roles of LEAP2 extend beyond appetite suppression. Studies have shown that LEAP2 has an impact on insulin secretion, suggesting its potential involvement in glucose metabolism and possibly insulin sensitivity, which is crucial in managing conditions like type 2 diabetes. Moreover, LEAP2 levels appear to fluctuate based on factors such as gender, developmental stage, and even interventions like bariatric surgery, which is known for its role in managing obesity and diabetes. Given these findings, LEAP2 shows potential as a therapeutic target, particularly for addressing obesity and metabolic diseases such as type 2 diabetes. Its ability to influence food intake and energy balance makes it a promising candidate for further research into therapies aimed at weight regulation and glycemic control. In the future, LEAP2 could become an important agent in the development of treatments aimed at curbing obesity and its associated metabolic disorders.