The Effect of Sustainable Tillage Systems on Faba Bean Yield in a Long-Term Experiment in Poland
2025, Małecka-Jankowiak, Irena, Blecharczyk, Andrzej, Sawinska, Zuzanna, Piechota, Tomasz, Idziak, Robert
In recent times, there has been a trend towards sustainable agriculture in the world, which is aimed at protecting the production potential of the soil and ensuring stable agricultural production. Conservation agriculture is one way to ensure sustainable production. The main principles of conservation agriculture are crop diversification, minimizing tillage, and maintaining soil cover with plant residues. An important role in crop diversification is assigned to legumes. The research was conducted in 2016–2019 based on a long-term experiment established in 1999 (Brody/Poznań). The experiment with faba bean included four variants of tillage: 1—conventional tillage (CT), 2—reduced tillage (RT), 3—strip-tillage (ST), and 4—no-tillage (NT). The research took place in two extremely different weather conditions. Two very favorable years and two with catastrophic drought. Weather conditions had a greater effect on faba bean yields than the tillage systems. The highest faba bean seed yield was obtained in 2017. The seed yield ranged from 6.73 t ha−1 in NT to 7.64 t ha−1 after ST. A high seed yield (4.94–5.97 t ha−1) was also in 2016. In years characterized by low rainfall (2018 and 2019), the average seed yield was 1.89 and 1.74 t ha−1, respectively. Considering the sustainability of the assessed tillage systems in faba bean, both in terms of environment and production, RT and ST should be indicated as the most sustainable. They limit the intensity of tillage and can be classified as conservation tillage, as opposed to conventional tillage. NT provides the best soil protection and conservation, but in favorable weather conditions, it limits the yield level of faba beans. The yields obtained in RT and ST technologies were high, both in favorable and extremely unfavorable years. Given the increasing climatic instability and unpredictable weather, yield stability in various conditions is as important as ensuring conservation tillage.
Relay Intercropping of Soybean and Winter Barley in Polish Climatic Conditions—Importance of Strip Width and Yearly Weather
2024, Świtek, Stanisław, Majchrzycki, Wiktor, Taras, Aleksander, Piechota, Tomasz
Climate change and the increasing demand for food necessitate innovative agricultural methods. Relay intercropping, where one crop is sown into another already-grown crop, offers a promising alternative to traditional systems. In the 2021/22 and 2022/23 seasons, a field experiment was conducted to assess the relay intercropping of winter barley (Hordeum vulgare L. ssp. polistichon) with soybean (Glycine max (L.) Merr). This experiment took place at the Brody Experimental and Educational Station of the University of Life Sciences in Poznań, Poland. Soybean was sown into designated strips within the barley field, and both crops were cultivated simultaneously until the barley was harvested. After the barley harvest, the soybean plants continued to grow and were harvested at full maturity. The results varied between the two years of this experiment. In the first year, characterized by drought conditions, the soybean yield was completely lost, while the barley maintained a stable yield. In the second year, with more favorable weather, the yields of barley and soybean were interdependent. The use of the relay intercropping system did not increase the Land Equivalent Ratio (LER) above 1. Additionally, total protein yield remained consistent across different cultivation systems. Relay intercropping can serve as a method for protecting crop protein yields under adverse weather conditions and may offer a viable alternative for soybean cultivation in challenging climates.
Wpływ wybranych herbicydów na rozwój Camelina sativa L. Crantz i Brassica carinata L. Brown
2024, Grzanka, Monika, Piechota, Tomasz, Kurasiak-Popowska, Danuta, Stuper-Szablewska, Kinga, Glina, Bartłomiej, Mikołajczyk, Sylwia, Tomkowiak, Agnieszka, Rzyska-Szczupak, Katarzyna, Buśko, Maciej
How Tillage System Affects the Soil Carbon Dioxide Emission and Wheat Plants Physiological State
2024, Sawinska, Zuzanna, Radzikowska-Kujawska, Dominika, Blecharczyk, Andrzej, Świtek, Stanisław, Piechota, Tomasz, Cieślak, Adam, Cardenas, Laura M., Louro-Lopez, Aranzazu, Gregory, Andrew S., Coleman, Kevin, Lark, R. Murray
The cultivation or ‘tillage’ system is one of the most important elements of agrotechnology. It affects the condition of the soil, significantly modifying its physical, chemical, and biological properties, and the condition of plants, starting from ensuring appropriate conditions for sowing and plant growth, through influencing the efficiency of photosynthesis and ultimately, the yield. It also affects air transmission and the natural environment by influencing greenhouse gas (GHG) emissions potentially. Ultimately, the cultivation system also has an impact on the farmer, providing the opportunity to reduce production costs. The described experiment was established in 1998 at the Brody Agricultural Experimental Station belonging to the University of Life Sciences in Poznań (Poland) on a soil classified as an Albic Luvisol, while the described measurements were carried out in the 2022/2023 season, i.e., 24 years after the establishment of the experiment. Two cultivation methods were compared: Conventional Tillage (CT) and No Tillage (NT). Additionally, the influence of two factors was examined: nitrogen (N) fertilization (0 N—no fertilization, and 130 N–130 kg N∙ha−1) and the growth phase of the winter wheat plants (BBCH: 32, 65 and 75). The growth phase of the plants was assessed according to the method of the Bundesanstalt, Bundessortenamt and CHemische Industrie (BBCH). We present the results of soil properties, soil respiration, wheat plants chlorophyll fluorescence, and grain yield. In our experiment, due to low rainfall, NT cultivation turned out to be beneficial, as it was a key factor influencing the soil properties, including soil organic carbon (SOC) content and soil moisture, and, consequently, creating favorable conditions for plant nutrition and efficiency of photosynthesis. We found a positive effect of NT cultivation on chlorophyll fluorescence, but this did not translate into a greater yield in NT cultivation. However, the decrease in yield due to NT compared to CT was only 5% in fertilized plots, while the average decrease in grain yield resulting from the lack of fertilization was 46%. We demonstrated the influence of soil moisture as well as the growth phase and fertilization on carbon dioxide (CO2) emissions from the soil. We can clearly confirm that the tillage system affected all the parameters discussed in the work.