Monitoring meteorological drought by different drought indices (SPI, RDI, and DI) using drought indices calculator (DrinC) – A case study from Isparta district, a semi-arid Mediterranean region in Türkiye
2025, Agharezaee, Mohammad, Ucar, Yusuf, Kocięcka, Joanna, Terzi, Özlem
Description of the subject. Drought indices are essential for monitoring drought since they simplify the complex climate functions and quantify climatic variance for their severity, duration, and frequency. The drought index calculator (DrinC) software is useful for monitoring the meteorological drought by calculating drought indices. Objectives. The main objective of this study is to use some drought indices such as SPI, RDI, and RD to monitor the severity of drought in a Mediterranean region of Türkiye, the province of Isparta, using DrinC Software. Method. The research work considered the period from 1960 to 2021 in order to calculate the indices such as standardized precipitation index (SPI), reconnaissance drought index (RDI), and rainfall deciles (RD). The software was used to facilitate the calculation of the indices considered in the study, which are specifically based on the gamma method over 3, 6, 9, and 12 months. Results. The results revealed that the years 1984, 1999, and 2015 recorded SPI-3 values of -1.51, -2.11, and -2.03, respectively. Additionally, the years 1989 and 1999 exhibited SPI values of -1.62 and -2.26, respectively. For SPI-9, the years 1999 and 2007 showed values of -1.66 and -1.51, respectively. Moreover, SPI values of -1.51, -1.68, and -1.94 were noted in the years 1988, 1989, and 1999, respectively. Results for the Rainfall Deciles method showed that, among 61 years, 12 years were affected by drought (lowest %20 much below normal), and the most affected years were 1972-1973, 1988-1989, 1989-1990, 1992-1993, 1999-2000, and 2007-2008. The R2 value of 0.95 showed that annual SPI and annual RDI were highly correlated, and the linear regression fit well. Conclusions. This study highlights the effectiveness of using indices such as SPI, RDI, and RD, for assessing meteorological drought in Isparta over 60 years. Results show varying drought severity and frequency across indices, with SPI identifying more extreme droughts. Strong correlations between SPI and RDI confirm their reliability, while the Pettitt test indicates a major breakpoint in 1970. The findings emphasize the need for multi-index approaches and integrating additional measures like soil moisture to improve drought monitoring and management strategies.
Use of Rainwater Harvesting from Roofs for Irrigation Purposes in Hydroponic Greenhouse Enterprises
2024, Boyacı, Sedat, Atılgan, Atılgan, Kocięcka, Joanna, Liberacki, Daniel, Rolbiecki, Roman
This study was conducted to determine the irrigation water demand due to solar radiation in high-tech greenhouses using hydroponic systems in Turkey’s Mediterranean and continental climates, and to determine the annual water consumption and storage capacity with harvested rainwater. Intensive greenhouse cultivation and the recent increase in modern greenhouse cultivation were important factors in selecting the provinces for the study. The chosen provinces were Antalya and Adana, with a Mediterranean climate, and Afyonkarahisar and Kırşehir, with a continental climate. In this research, depending on the production period, the amount of water consumed per unit of area in greenhouses in Antalya, which has a Mediterranean climate, was determined to be 1173.52 L m−2 per yr−1, and in Adana, it was 1109.18 L m−2 per yr−1. In the provinces of Afyonkarahisar and Kırşehir, where a continental climate prevails, water consumption was calculated to be 1479.11 L m−2 per yr−1 and 1370.77 L m−2 per yr−1, respectively. Storage volumes for the provinces of Antalya, Adana, Afyonkarahisar and Kırşehir were found to be 438.39 L m−2, 122.71 L m−2, 42.12 L m−2 and 43.65 L m−2, respectively. For the provinces of Antalya, Adana, Afyonkarahisar and Kırşehir, the rates of rainwater harvesting and meeting plants’ water consumption were calculated to be 80.79%, 54.27%, 27.47% and 25.16%, respectively. In addition, the amount of water fee savings that could be achieved by rainwater harvesting was calculated to be USD 901.3 per yr−1 for Antalya, USD 835.3 per yr−1 for Adana, USD 247.6 per yr−1 for Afyonkarahisar and USD 210.2 per yr−1 for Kırşehir. As a result, rainwater harvesting will not only provide economic gain to enterprises but will also be important in reducing the negative effects of irregular rainfall regimes caused by climate change on underground and surface water resources. It was also concluded that enterprises should focus on popularizing rainwater harvesting.
Assessment of the Crop Water Stress Index for Green Pepper Cultivation Under Different Irrigation Levels
2025, Boyacı, Sedat, Kocięcka, Joanna, Kęsicka, Barbara, Atılgan, Atılgan, Liberacki, Daniel
The objective of this study was to evaluate the effects of different water levels on yield, morphological, and quality parameters, as well as the crop water stress index (CWSI), for pepper plants under a high tunnel greenhouse in a semi-arid region. For this purpose, the irrigation schedule used in this study includes 120%, 100%, 80%, and 60% (I120, I100, I80, and I60) of evaporation monitored gravimetrically. In this study, increasing irrigation levels (I100 and I120) resulted in increased stem diameter, plant height, fruit number, leaf number, and leaf area values. However, these values decreased as the water level dropped (I60 and I80). At the same time, increased irrigation resulted in improvements in fruit width, length, and weight, as well as a decrease in TSS values. While total yield and marketable yield values increased at the I120 water level, TWUE and MWUE were the highest at the I100 water level. I80 and I120 water levels were statistically in the same group. It was found that the application of I100 water level in the high tunnel greenhouse is the appropriate irrigation level in terms of morphology and quality parameters. However, in places with water scarcity, a moderate water deficit (I80) can be adopted instead of full (I100) or excessive irrigation (I120) in pepper cultivation in terms of water conservation. The experimental results reveal significant correlations between the parameters of green pepper yield and the CWSI. Therefore, a mean CWSI of 0.16 is recommended for irrigation level I100 for higher-quality yields. A mean CWSI of 0.22 is recommended for irrigation level I80 in areas where water is scarce. While increasing the CWSI values decreased the values of crop water consumption, leaf area index, total yield, marketable yield, total water use efficiency, and marketable water use efficiency, decreasing the CWSI increased these values. This study concluded that the CWSI can be effectively utilised in irrigation time planning under semi-arid climate conditions. With the advancement of technology, determining the CWSI using remote sensing-based methods and integrating it into greenhouse automation systems will become increasingly important in determining irrigation times.
Evaluation of Crop Water Stress Index (CWSI) for High Tunnel Greenhouse Tomatoes under Different Irrigation Levels
2024, Boyaci, Sedat, Kocięcka, Joanna, Atilgan, Atilgan, Liberacki, Daniel, Rolbiecki, Roman, Saltuk, Burak, Stachowski, Piotr
An experiment was conducted to determine the effect of water stress on yield and various physiological parameters, including the crop water stress index for tomatoes in the Central Anatolian region of Turkey. For this purpose, the irrigation schedule used in this study includes 120%, 100%, 80%, and 60% (I120, I100, I80, I60) of evaporation from the gravimetrically. Water deficit was found to cause a stress effect in tomato plants, which was reflected in changes in plants’ morphological and pomological function (such as stem diameter, fruit weight, pH, titratable acidity, and total soluble solids). Irrigation levels had a significant effect on the total yield of tomatoes. The lowest water use efficiency (WUE) was obtained from the I60, while the highest WUE was found in the I100 irrigation level. The CWSI was calculated using an empirical approach from measurements of infrared canopy temperatures, ambient air temperatures, and vapor pressure deficit values for four irrigation levels. The crop water stress index (CWSI) values ranged from −0.63 to a maximum value of 0.53 in I120, from −0.27 to 0.63 in I100, from 0.06 to 0.80 in I80, and from 0.37 to 0.97 in I60. There was a significant relation between yield and CWSI. The yield was correlated with mean CWSI values, and the linear equation Total yield = −2398.9CWSI + 1240.4 can be used for yield prediction. The results revealed that the CWSI value was useful for evaluating crop water stress in tomatoes and predicting yield.
The Benefits of Green Roofs and Possibilities for Their Application in Antalya, Turkey
2025, Ertop, Hasan, Atılgan, Atılgan, Jakubowski, Tomasz, Kocięcka, Joanna
Rapid population growth, urbanization, and industrialization have many negative environmental effects. These adverse effects are felt more in urban areas than in rural areas. Considering the high rate of urban development, the idea that green roof structures can be used on rooftops is important in reducing the current negative effects. In addition, water retention on these roof areas can be helpful in the face of drought periods. In this study, the amount of water that can be retained on a 100 m2 roof area in Antalya Province, Turkey was calculated. As a result, it was determined that August is the month when the least water can be retained due to rainfall. It was calculated that between 0.168 m3 and 0.363 m3 of water can be retained in August. Furthermore, the month in which the most water can be retained due to rainfall is December, and the amounts of water that can be retained are between 5.762 m3 and 21.640 m3. These calculated values are anticipated to be important in understanding how much water can be retained in the planned green roofs. In addition, it has been determined that the energy savings that can be made for heating purposes in a 100 m2 green roof area can be between 3900 kWh and 11,250 kWh.
The effects of high temperature and low humidity on crop water stress index of seed pumpkin plants (Cucurbita pepo L.) in semi-arid climate conditions
2024, Ucak, Ali Beyhan, Kocięcka, Joanna, Liberacki, Daniel, Saltuk, Burak, Atilgan, Atilgan, Stachowski, Piotr, Rolbiecki, Roman
This study aimed to evaluate the effects of high temperature and low humidity on the crop water stress index (CWSI) of seed pumpkin plants grown under semi-arid climate conditions to determine the optimum irrigation time. This research unveils the critical impact of high temperature and low humidity on seed pumpkin growth, emphasizing the vital role of the CWSI in optimizing irrigation strategies and seed yield. Moreover, the relationship between CWSI, physiological parameters, and seed yield of the pumpkin was investigated. The mean CWSI values in the I70 (0.40) and I35 (0.56) treatments were 42% and 100% higher, respectively than those in the full irrigation (I100) treatment (0.28). While the I70 treatment showed manageable water stress with minimal impact, the I35 treatment experienced severe stress, significantly reducing crop growth and yield. The mean seed yield (SY) in the I70 treatment increased to 1245.2 kg ha–1 compared to I35 (903.3 kg ha–1) but remained lower than I100 (1339.3 kg ha–1). The CWSI had negative correlations (p ≤ 0.01) with seed yield, chlorophyll content, and leaf area index, while it had positive correlations with water use efficiency and irrigation water use efficiency (p ≤ 0.01). This study showed that pumpkins could be grown successfully at 30% water deficit conditions, and a water deficit higher than 30% may cause a significant seed yield loss in semi-arid climate conditions. In addition, the results highlight the importance of optimal irrigation and CWSI monitoring for informed irrigation decisions and sustainable agricultural practices. Therefore, moderate water deficit (I70) can be adopted in pumpkin cultivation as an alternative to full irrigation.
The effect of climate change on stream basin hydrometeorological variables: The example of Dim Stream (Turkey)
2024, Atilgan, Atılgan, Yücel, Ali, Kocięcka, Joanna, Rolbiecki, Roman, Şenyiğit, Ulaş, Taş, İsmail, Marković, Monika, Liberacki, Daniel
Energy Potential of Greenhouse Plant Residue: The Cases of Turkey and Poland
2025, Atılgan, Atılgan, Boyacı, Sedat, Famielec, Stanisław, Krakowiak-Bal, Anna, Ziemiańczyk, Urszula, Kocięcka, Joanna, Kurpaska, Sławomir, Rolbiecki, Roman, Liberacki, Daniel, Malinowski, Mateusz
The search for waste management opportunities is crucial for achieving environmentally friendly waste practices and ensuring the country’s energy security. This research aimed to valorize biomass and waste generated in greenhouses and to analyze the potential for electricity production from this waste. The analyses compared the situations in Turkey and Poland, where greenhouse production of vegetables is developing and constitutes an important link in agricultural activities, despite differences in climatic conditions. The cultivation of vegetables and flowers under cover is rapidly expanding in both countries and, with changing climatic conditions, is expected to shape the future of agriculture. In addition to estimating the energy that can be obtained, the study also evaluated the economic benefits of such a solution and the volume of avoided CO2 emissions from fossil fuels. The issue of utilizing these wastes is significant because current methods of their management do not lead to energy production, so their considerable energy potential is wasted, as highlighted in this study. Moreover, there is a lack of similar studies in the literature. The plant species chosen as materials in this study were tomatoes, peppers, eggplant, watermelon, and melon in the case of Turkey. For Poland, the analysis was conducted for tomatoes and greenhouse cucumbers. These crops represent the largest cultivated areas under cover in the respective countries. Results indicated that the average yearly amount of vegetable residue is approximately 463 thousand Mg in Turkey, and 77 thousand Mg in Poland. The estimated annual electricity potential is 430 GWh in Turkey and 80 GWh in Poland. Considering the efficiency of power generation in a typical power plant, the real amount of electricity to be obtained is 0.46 MWh per Mg of waste in Turkey and 0.52 MWh in Poland.
Determination of the Effects of Different Irrigation Levels and Vermicompost Doses on Water Consumption and Yield of Greenhouse-Grown Tomato
2024, Boyacı, Sedat, Kocięcka, Joanna, Atilgan, Atilgan, Niemiec, Marcin, Liberacki, Daniel, Rolbiecki, Roman
This study was conducted in pots under a polycarbonate greenhouse to determine the effects of different irrigation levels and vermicompost doses on the morphological and phenological characteristics, water consumption, water use efficiency, and yield parameters of tomato plants. For this purpose, different irrigation levels of 100%, 75%, 50% (I100: full irrigation, I75, I50) and vermicompost (VC) doses of 0, 10% and 20% (VC0, VC10 and VC20, w/w) were applied as the treatments. The study’s results determined the irrigation levels and vermicompost doses affected the tomato plants’ morphological and fruit quality parameters. The highest and lowest plant water consumption (ET) values for the treatments were determined as 47.8 L (I100VC10) and 21.2 L (I50VC0), respectively. Moreover, irrigation water levels and vermicompost doses significantly influenced the total yield of tomatoes. The highest and lowest total and marketable yields were obtained from the I100VC20 and I50VC0 irrigation levels and vermicompost doses. Similarly, the highest and lowest total water use efficiencies were achieved from the I100VC20 (21.9 g L−1) and I50VC0 (11.0 g L−1) treatments. Furthermore, the highest and lowest marketable water use efficiencies were obtained from the I100VC20 (21.9 g L−1) and I50VC0 (7.8 g L−1) treatments. The yield response factor (ky) was found to be 1.42. Although the highest efficiency was achieved from 100% full irrigation and a 20% vermicompost dose in the study, it is suggested that 75% irrigation level and 10% fertilizer doses can also be applied in places where water is limited and fertilizer is expensive. The results revealed that the appropriate irrigation level and vermicompost doses could reliably be used to enhance tomato yield.
Determination of Performance of Different Pad Materials and Energy Consumption Values of Direct Evaporative Cooler
2024, Jakubowski, Tomasz, Boyacı, Sedat, Kocięcka, Joanna, Atılgan, Atılgan
The purpose of this study is to determine the performances of luffa and greenhouse shading netting (which can be used as alternatives to commercial cellulose pads, that are popular for cooling greenhouses), the contribution of external shading to the evaporative cooling performance, and the energy consumption of the direct evaporative cooler. In this experiment, eight different applications were evaluated: natural ventilation (NV), natural ventilation combined with external shading net (NV + ESN), cellulose pad (CP), cellulose pad combined with external shading net (CP + ESN), luffa pad (LP), luffa pad combined with external shading net (LP + ESN), shading net pad (SNP), and shading net pad combined with external shading net (SNP + ESN). The cooling efficiencies of CP, CP + ESN, LP, LP + ESN, SNP, and SNP + ESN were found to be 37.6%, 45.0%, 38.9%, 41.2%, 24.4%, 29.1%, respectively. Moreover, their cooling capacities were 2.6 kW, 3.0 kW, 2.8 kW, 3.0 kW, 1.7 kW, 2.0 kW, respectively. The system water consumption values were 2.9, 3.1, 2.8, 3.2, 2.4, 2.4 l h−1, respectively. The performance coefficients of the system were determined to be 10.2, 12.1, 11.3, 11.9, 6.6, 7.8. The system’s electricity consumption per unit area was 0.15 kWh m−2. As a result of the study, it was determined that commercially used cellulose pads have advantages over luffa and shading net materials. However, luffa pads can be a good alternative to cellulose pads, considering their local availability, initial cost, cooling efficiency, and capacity.
The Effect of Drip Irrigation and Nitrogen Levels on the Oil and Fatty Acid Composition of Sesame and Its Economic Analysis
2024, Tas, Ismail, Akcura, Sevim, Kaplan, Mahmut, Jagosz, Barbara, Atılgan, Atılgan, Kocięcka, Joanna, Rolbiecki, Roman, Liberacki, Daniel, Rolbiecki, Stanisław
One of the oldest oilseed crops is sesame, which is mainly cultivated due to its valuable oleic/linolenic fatty acid ratio. The application of precise irrigation and fertilisation is crucial to ensure the continuity and productivity of sesame production, especially in arid and semi-arid regions. This study aimed to determine the effect of drip irrigation and nitrogen levels on sesame’s oil and fatty acid composition. For this purpose, four nitrogen doses (N0: 0 kg ha−1, N30: 30 kg ha−1, N60: 60 kg ha−1 and N90: 90 kg ha−1) and three different irrigation water levels (I50, I75 and I100, which correspond to 50, 75 and 100% evaporation levels from the evaporation of the Class A pan) were applied. The highest oleic acid content (43.06%) was obtained for the I75N90 treatment. In the case of linoleic fatty acid, the greatest value (43.66%) was for I50N0 treatment. The effects of irrigation and nitrogen doses on oleic acid and linoleic acid content were inverse of each other. An increase in applied irrigation water increased the linoleic acid content. However, it caused a decrease in oleic acid content. Increasing the nitrogen dose increased the oleic acid content and caused a decrease in linoleic acid content. Furthermore, this study showed that the I50N60 treatment (50% Epan and a rate of 60 kg N ha−1) is the most effective for achieving high grain and oil yields in sesame cultivation. The results obtained provide practical guidance for farmers in sesame cultivation.
Energy Efficiency in Greenhouses and Comparison of Energy Sources Used for Heating
2025, Boyacı, Sedat, Kocięcka, Joanna, Jagosz, Barbara, Atılgan, Atılgan
Sustainability in greenhouse farming, one of the areas where the most energy is needed in the agricultural sector, can be achieved by increasing energy efficiency. Due to increasing energy costs in Türkiye and worldwide, increasing energy efficiency in greenhouses is seen as possible using renewable energy sources that do not produce waste instead of fossil energy sources. This study determined the heat-energy demand in the provinces of Türkiye with continental (Kırşehir and Kütahya) and Mediterranean (Antalya and Mersin) climates. For this purpose, the heat-energy requirement was calculated for greenhouse types with three different insulation properties (S-1: roof and side walls polyethylene, S-2: roof polyethylene, side walls polycarbonate, and S-3: roof polyethylene, side walls polycarbonate, and thermal curtain). Then, the amount and cost of fossil (coal, fuel oil, and natural gas) and renewable energy sources (geothermal and biogas) to be used in obtaining this energy, the heating cost for unit tomato yield, and the amount of carbon dioxide (CO2) released into the atmosphere were compared. According to the results obtained, the highest heat-energy requirement was 356.5 kWh m−2 year−1 in the S-1 greenhouse in the Kütahya province, and the lowest was 46.3 kWh m−2 year−1 in the S-3 greenhouse in the Mersin province. Depending on energy conservation, 6% of energy savings can be achieved in S-2 and 29% in S-3 compared to S-1. The highest heating cost for producing one kilogram of tomatoes was 0.70 USD kg−1 in fuel oil and Kütahya province (S-1). The lowest was calculated as 0.06 USD kg−1 in geothermally heated greenhouses in Kırşehir and Kütahya provinces (S-3). The highest CO2 to be released into the atmosphere with fuels was equal to 253.1 kg m−2 year−1 in coal fuel in Kütahya province (S-1). The lowest was calculated as 1.1 kg m−2 year−1 in geothermally heated greenhouses in Kırşehir and Kütahya provinces (S-3). The results of this research can be used to develop feasibility studies for greenhouse companies, greenhouse sector policies, policymakers, environmental protection, and taking precautions against the climate crisis.