Additives Improving the Efficiency of Biogas Production as an Alternative Energy Source—A Review
2024, Pilarska, Agnieszka A., Pilarski, Krzysztof, Kulupa, Tomasz, Kubiak, Adrianna, Wolna-Maruwka, Agnieszka, Niewiadomska, Alicja, Dach, Jacek
Additives for anaerobic digestion (AD) can play a significant role in optimising the process by increasing biogas production, stabilising the system and improving digestate quality. The role of additives largely boils down to: (i) enhancing direct interspecies electron transfer (DIET) between microbial communities, resulting in improved syntrophic interactions and methane production rates (e.g. biochar, magnetite and carbon nanotubes), (ii) adsorption of toxic substances that may inhibit microbial activity (e.g. activated carbon, zeolites), (iii) improving microbial activity and increasing process stability (e.g. cobalt, nickel, iron, selenium), (iv) maintaining optimal pH levels for microbial activity (e.g. magnesium oxide), (v) reducing inhibition (the aforementioned adsorbents and conductive substances), (vi) accelerating the decomposition of complex organic materials into simpler compounds that are more easily digested by microorganisms, thereby increasing the rate of hydrolysis (enzymes, including cellulases, proteases and lipases). Through the aforementioned action, additives can significantly affect AD performance. The function of these materials varies, from enhancing microbial activity to maintaining optimal conditions and protecting the system from inhibitors. The choice of additives should be carefully tailored to the specific needs and conditions of the digester to maximise benefits and ensure sustainability. In light of these considerations, this paper characterizes the most commonly used additives and their combinations based on a comprehensive review of recent scientific publications, including a report on the results of conducted studies. The publication features chapters that describe: carbon-based conductive materials, metal oxide nanomaterials, trace metal and biological additives, including enzymes and microorganisms. It concludes with a chapter summarising reports on various additives and discussing their indications for functional systems with determined properties. A notable advantage of this work is the updated literature data, clear summaries, and a substantive description of the performance of the additives discussed.
The energetic and economic analysis of demand-driven biogas plant investment possibility in dairy farm
2023, Pochwatka, Patrycja, Rozakis, Stelios, Kowalczyk-Juśko, Alina, Czekała, Wojciech, Qiao, Wei, Nägele, Hans-Joachim, Janczak, Damian, Mazurkiewicz, Jakub, Mazur, Andrzej, Dach, Jacek
Reduction of Greenhouse Gas Emissions by Replacing Fertilizers with Digestate
2023, Kowalczyk-Juśko, Alina, Pochwatka, Patrycja, Mazurkiewicz, Jakub, Pulka, Jakub, Kępowicz, Barbara, Janczak, Damian, Dach, Jacek
Additives Improving the Efficiency of Biogas Production as an Alternative Energy Source - A Review
2024, Pilarska, Agnieszka, Pilarski, Krzysztof, Kulupa, Tomasz, Kubiak, Adrianna, Wolna-Maruwka, Agnieszka, Niewiadomska, Alicja, Dach, Jacek
Additives for anaerobic digestion (AD) can play a significant role in optimizing the process by increasing biogas production, stabilizing the system, and improving digestate quality. The role of additives largely boils down to, among others, enhancing direct interspecies electron transfer (DIET) between microbial communities, resulting in improved syntrophic interactions, adsorption of toxic substances that may inhibit microbial activity, improving microbial activity, and increasing process stability and accelerating the decomposition of complex organic materials, thereby increasing the rate of hydrolysis. Through the aforementioned action, additives can significantly affect AD performance. The function of these materials varies, from enhancing microbial activity to maintaining optimal conditions and protecting the system from inhibitors. The choice of additives should be carefully tailored to the specific needs and conditions of the digester to maximize benefits and ensure sustainability. In light of these considerations, this paper characterizes the most commonly used additives and their combinations based on a comprehensive review of recent scientific publications, including a report on the results of conducted studies. The publication features chapters that describe carbon-based conductive materials, metal oxide nanomaterials, trace metal, and biological additives, including enzymes and microorganisms. It concludes with the chapters summarising reports on various additives and discussing their functional properties, as well as advantages and disadvantages. The presented review is a substantive and concise analysis of the latest knowledge on additives for the AD process. The application of additives in AD is characterized by great potential; hence, the subject matter is very current and future-oriented.
Biogas Plants: Fundamentals, Operation and Prospects
2023, Gadirli, Gulnar, Pilarska, Agnieszka, Dach, Jacek, Pilarski, Krzysztof, Kolasa-Więcek, Alicja, Borowiak, Klaudia
As the global demand for renewable energy continues to rise, biogas technology has emerged as a promising solution for sustainable energy generation. This review article presents the advantages of biogas technologies and extensively discusses the main principles of biogas production in the methane fermentation process. In this respect, the main parameters of the process, which require monitoring and are at the same time decisive for its course and efficiency are described, the principles of substrate selection are discussed and the necessity and advantages of the use of organic waste according to the model of a circular economy and the concept of sustainable development, are indicated. The part on biogas production is summarised with an explanation of the necessity to treat and purify biogas, taking into account the share of methane extracted. A special place in this paper is devoted to the design, construction, functioning and operation of biogas plants, based on both scientific and practical aspects. In conclusion of this chapter, the economic aspects and profitability of operating biogas plants are discussed, taking into account, in a theoretical balance sheet – in addition to investment and operating costs and the availability and cost of raw materials – the possibilities of producing and using electricity and heat, as well as environmental and social benefits. The article concludes with a discussion of opportunities and barriers to the development of biogas plants, pointing to: financial issues, access to feedstock, political regulations, public awareness and the geopolitical situation as key factors issues related to biogas plants – in different regions of the world.
Evaluation of tree leaf properties for potential biogas production
2025, Janczak, Damian, Lucejko, Jeannette Jacqueline, Zborowska, Magdalena, Francesconi, Sandro, Krupka, Michał, Pochwatka, Patrycja, Gikas, Petros, Czekała, Wojciech, Qiao, Wei, Dach, Jacek