Meta-Analysis of Influence of Diversity of Parental Forms on Heterosis and Specific Combining Ability of Their Hybrids
2023, Bocianowski, Jan, Nowosad, Kamila, Bujak, Henryk
An important stage in any breeding activity is selection of suitable individuals for further breeding. Thus, the main goal of breeders becomes such a selection of parental forms that leads to the consolidation and maximization of the value of traits of significant utility and economic importance. Heterosis and specific combining ability are very important parameters in plant and animal breeding. The ability to predict their value and relevance could significantly shorten the breeding process. One way to predict the effects of heterosis and specific combining ability is to select parental forms for crosses. This selection can be made on the basis of variation in parental forms. An analysis was made of publicly available data that contain information about the effects of heterosis, the effects of specific combining ability, and phenotypic and genetic diversity of parental forms. Preliminary studies show that the best approach for obtaining favorable hybrids would be selection of parental forms that are very genetically diverse while being phenotypically equal.
Identification and Analysis of Candidate Genes Associated with Yield Structure Traits and Maize Yield Using Next-Generation Sequencing Technology
2024, Nowak, Bartosz, Tomkowiak, Agnieszka, Sobiech, Aleksandra, Bocianowski, Jan, Kowalczewski, Przemysław Łukasz, Spychała, Julia, Jamruszka, Tomasz
The main challenge of agriculture in the 21st century is the continuous increase in food production. In addition to ensuring food security, the goal of modern agriculture is the continued development and production of plant-derived biomaterials. Conventional plant breeding methods do not allow breeders to achieve satisfactory results in obtaining new varieties in a short time. Currently, advanced molecular biology tools play a significant role worldwide, markedly contributing to biological progress. The aim of this study was to identify new markers linked to candidate genes determining grain yield. Next-generation sequencing, gene association, and physical mapping were used to identify markers. An additional goal was to also optimize diagnostic procedures to identify molecular markers on reference materials. As a result of the conducted research, 19 SNP markers significantly associated with yield structure traits in maize were identified. Five of these markers (28629, 28625, 28640, 28649, and 29294) are located within genes that can be considered candidate genes associated with yield traits. For two markers (28639 and 29294), different amplification products were obtained on the electrophorograms. For marker 28629, a specific product of 189 bp was observed for genotypes 1, 4, and 10. For marker 29294, a specific product of 189 bp was observed for genotypes 1 and 10. Both markers can be used for the preliminary selection of well-yielding genotypes.
Analysis of Linkage on Interaction of Main Aspects (Genotype by Environment Interaction, Stability and Genetic Parameters) of 1000 Kernels in Maize (Zea mays L.)
2023, Nowosad, Kamila, Bocianowski, Jan, Kianersi, Farzad, Pour-Aboughadareh, Alireza
The assessment of 1000-kernel weight holds significant importance in determining maize grain yield, and elucidating its underlying genetic mechanisms is imperative for enhancing its overall performance. The material for the study consisted of 26 doubled-haploid (DH) maize lines obtained from crossing two cultivars with flint kernels. Lines were planted in the northern part of the Lower Silesia voivodship in Poland over ten years (2013–2022). The 1000-kernel weight was assessed. The purposes of the research were as follows: (1) to assess genotype by environment interaction (GEI by the additive main effects and multiplicative interaction (AMMI) model; (2) the selection of stable DH lines and environment-specific lines; and (3) the estimation of parameters related to additive and additive–additive gene interaction (epistasis). The results indicate the significant effects of genotype and environment, as well as the GEI, on the 1000-kernel weight. Estimates of additive gene action effects were statistically significant in every year of the study, except 2022. Estimates of epistasis (total additive-by-additive interaction) effects for 1000-kernel weight were statistically significant in 2013, 2015, and 2017 (positive effects), as well as in 2018 and 2020 (negative effects). The lines KN07 and KN10 are recommended for further inclusion in the breeding program due to their stability and highest average of 1000-kernel weight.
Transcriptomic Characterization of Genes Harboring Markers Linked to Maize Yield
2024, Tomkowiak, Agnieszka, Jamruszka, Tomasz, Bocianowski, Jan, Sobiech, Aleksandra, Jarzyniak, Karolina Maria, Lenort, Maciej, Mikołajczyk, Sylwia, Żurek, Monika
Background: It is currently believed that breeding priorities, including maize breeding, should focus on introducing varieties with greater utility value, specifically higher yields, into production. Global modern maize breeding relies on various molecular genetics techniques. Using the above mentioned technologies, we can identify regions of the genome that are associated with various phenotypic traits, including yield, which is of fundamental importance for understanding and manipulating these regions. Objectives: The aim of the study was to analyze the expression of candidate genes associated with maize yield. To better understand the function of the analyzed genes in increasing maize yield, their expression in different organs and tissues was also assessed using publicly available transcriptome data. Methods: RT-qPCR analyses were performed using iTaq Universal SYBR Green Supermix (Bio-Rad, Hercules, CA, USA) and CFX96 Touch Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA). Each of the performed RT-qPCR experiments consisted of three biological replicates and three technical replicates, the results of which were averaged. Results: The research results allowed us to select three out of six candidate genes (cinnamoyl-CoA reductase 1—CCR1, aspartate aminotransferase—AAT and sucrose transporter 1—SUT1), which can significantly affect grain yield in maize. Not only our studies but also literature reports clearly indicate the participation of CCR1, AAT and SUT1 in the formation of yield. Identified molecular markers located within these genes can be used in breeding programs to select high yielding maize genotypes.
Using NGS technology and association mapping to identify candidate genes associated with fusarium stalk rot resistance
2024, Bocianowski, Jan
Stalk rot caused by Fusarium fungi is one of the most widespread and devastating diseases of maize, and the introduction of resistant genotypes is one of the most effective strategies for controlling the disease. Breeding genotypes with genetically determined resistance will also allow less use of crop protection products. The aim of the research was to identify molecular markers and associated candidate genes determining maize plant resistance to Fusarium stalk rot. The plant material for this study consisted of 122 maize hybrids. The experiment was conducted in two localities: Smolice and Kobierzyce. The Fusarium stalk rot values ranged from 1.65% (for genotype G01.10) to 31.18% (for genotype G03.07) in Kobierzyce and from 0.00% (for 58 genotypes) to 6.36% (G05.03) in Smolice. The analyzed genotypes were simultaneously subjected to next-generation sequencing using the Illumina platform. Illumina sequencing identified 60,436 SilicoDArT markers and 32,178 SNP markers (92,614 in total). For association mapping, 32,900 markers (26,234 SilicoDArT and 6666 SNP) meeting the criteria (MAF > 0.25 and the number of missing observations <10%) were used. The results of the observation of the degree of infection and sequencing were used for association mapping, which ultimately resulted in the selection of ten molecular markers important at both places. Among the identified markers, two SNP markers that are located inside candidate genes play an important role. Marker 4772836 is located inside the serine/threonine-protein kinase bsk3 gene, while marker 4765764 is located inside the histidine kinase 1 gene. Both genes can be associated with plant resistance to Fusarium stalk rot, and these genes can also be used in breeding programs to select resistant varieties.
Studies of Oat-Maize Hybrids Tolerance to Soil Drought Stress
2023, Warzecha, Tomasz, Bathelt, Roman, Skrzypek, Edyta, Warchoł, Marzena, Bocianowski, Jan, Sutkowska, Agnieszka
The ontogenesis and yield formation in crop plants are modified by environmental conditions. Due to climatic change detected over two decades, the harmful influence of abiotic factors is increasing. One of the most threatening issues reducing plant productivity is drought stress. The strength of plant response to water shortages could differ depending on the strength of the drought stress, type of crop, genetic background, presence of additional stresses, and stage of plant development. There are examples of sexual hybridization between crop plants like oat (Avena sativa L.) and maize (Zea mays L.) with which stable fertile hybrids were generated. Additional maize chromosomes in oat plants (oat × maize addition, OMA) often infer morphological and physiological (e.g., PS II photosystem activity and chlorophyll production) changes modulated by the interaction of certain maize chromosomes added to the oat genome. The aim of the research was to evaluate the chosen physiological, biochemical, and agronomic parameters of OMA plants subjected to soil drought. Analysis of variance indicated that the main effects of genotype as well as treatment × genotype interaction were significant for all the traits studied (photosynthetic pigment content, selected PSII indices, mass of stem, number of grains/plant, mass of grains/plant). Most of the examined lines severely reduced PSII photosystem parameters, pigment content, and yield-related traits under drought stress. The results indicated that two lines (9 and 78b) retained high yielding potential under drought stress compared to commercial cv. Bingo.