Functional relationships between yield of maize (Zea mays L.) and its components
2023, Szulc, Piotr, Ambroży-Deręgowska, Katarzyna, Kardasz, Przemysław, Nowaczyk, Rafał, Neumann, Małgorzata
Summary A field experiment was carried out in the years 2017–2019 on the fields of the Experimental Station in Chrząstowo, belonging to the Research Centre for Cultivar Testing in Słupia Wielka. It was carried out for 3 years in the same split-plot design with 2 experimental factors in 3 field replicates. The following factors were studied: A – 1st order factor – maize variety: A1 – ES Bombastic (FAO 230-240) – single cross hybrid (SC), A2 – ES Abakus (FAO 230-240) – three-way cross hybrid (TC, stay-green), A3 – ES Metronom (FAO 240) – single cross hybrid (SC, stay-green + roots power). B – 2nd order factor – type of nitrogen fertilizer: B1 – control (without N application), B2 – ammonium nitrate, B3 – urea, B4 – ammonium nitrate + N-Lock, B5 – urea + N-Lock, B6 – Super N-46, B7 – UltraGran stabilo. In this study, we investigated whether there was a functional relationship between maize grain yield and ear number, TSW (thousand-seed weight), and seed number per ear. Additionally, we investigated whether there was a functional relationship between maize grain yield and ear number, TSW, and seed number per ear for each type of fertilization in a given study year, as well as for each type of fertilization regardless of year.
Influence of Application Timings, Rates, and Adjuvants on Tiencarbazone-Methyl Plus Isoxaflutole and Mesotrione with Nicosulfuron and Rimsulfuron on Weed Control and Yield of Maize
2024, Idziak, Robert, Sakowicz, Tomasz, Waligóra, Hubert, Szulc, Piotr, Majchrzak, Leszek, Stachowiak, Barbara, Neumann, Małgorzata
Weed control in maize is usually limited to a single herbicide treatment, but the application of two or more herbicides is associated with many benefits, e.g., increasing the spectrum of control weeds, reducing the risk of damage to crops by using reduced rates of herbicides, limiting their residues in the soil or crop, etc. This field experiment was conducted in the years 2016–2018 to determine whether the split application of soil-applied thiencarbazone-methyl + isoxaflutole and foliar-applied mesotrione + nicosulfuron + rimsulfuron, in reduced rates with adjuvants, can contribute to enhancing herbicide effectiveness and increasing maize yield. Weed control in maize in a split-dose system with a mixture of thiencarbazone-methyl + isoxaflutole at strongly reduced rates with the addition of UAN and the adjuvant Atpolan SoilMaxx or Grounded, and then mesotrione + nicosulfuron + rimsulfuron at strongly reduced rates with UAN and Atpolan SoilMaxx or Actirob 842 EC allowed for great control of weeds. The total amount of substances was slightly higher than in single treatments with adjuvants, but lower than for individual active substances, leading to a reduction in the amount of active substances reaching the environment, while maintaining very high herbicide efficacy.
Preliminary Studies on the Effect of Soil Conditioner (AMP) Application on the Chemical and Microbiological Properties of Soil under Winter Oilseed Rape Cultivation
2024, Szulc, Piotr, Selwet, Marek, Kaczmarek, Tomasz, Ambroży-Deręgowska, Katarzyna, Neumann, Małgorzata, Uniwersytet Przyrodniczy w Poznaniu
This study analyzed the effect of the application of a soil conditioner under the trade name of the Agro Mineral Product (AMP) in the winter rapeseed cultivation on the bacterial and fungal abundance, ion concentrations, and electrolytic conductivity of the soil solution. It was demonstrated that the AMP influenced changes in the total abundance of the culturable fractions of the soil bacteria and fungi at each of the tested time points. A stimulatory effect of the preparation on the growth of the soil bacteria and an inhibitory effect on the development of the fungi was observed, particularly at doses of 4 and 8 t·ha−1. A dose of 12 t·ha−1 proved to be the least effective in relation to the development of the soil microbiome. Increasing the AMP fertilization dose above 4 t·ha−1 caused changes in the chemistry of the soil solution (pH, EC, HCO3−, K+, and PO4-P). It is worth noting that this primarily resulted in decreases in the amounts of mobile forms of potassium (from 40.4 mg·dm−3 in the control to 26.7 mg·dm−3 at the 8 t·ha−1 dose) and orthophosphate as phosphorus (from −6.00 mg·dm−3 in the control to 3.75 mg·dm−3 at the 8 t·ha−1 dose) in the soil solution, which resulted in a reduction in the yield of the winter rapeseed (from 4.76 t·ha−1 in the control to 4.61 t·ha−1 at the 8 t·ha−1 and 4.43 t·ha−1 at the 12 t·ha−1 AMP dose).
Development of Delivery Systems with Prebiotic and Neuroprotective Potential of Industrial-Grade Cannabis sativa L.
2024, Sip, Szymon, Stasiłowicz-Krzemień, Anna, Sip, Anna, Szulc, Piotr, Neumann, Małgorzata, Kryszak, Aleksandra, Cielecka-Piontek, Judyta
This study delves into the transformative effects of supercritical carbon dioxide (scCO2) cannabis extracts and prebiotic substances (dextran, inulin, trehalose) on gut bacteria, coupled with a focus on neuroprotection. Extracts derived from the Białobrzeska variety of Cannabis sativa, utilising supercritical fluid extraction (SFE), resulted in notable cannabinoid concentrations (cannabidiol (CBD): 6.675 ± 0.166; tetrahydrocannabinol (THC): 0.180 ± 0.006; cannabigerol (CBG): 0.434 ± 0.014; cannabichromene (CBC): 0.490 ± 0.017; cannabinol (CBN): 1.696 ± 0.047 mg/gD). The assessment encompassed antioxidant activity via four in vitro assays and neuroprotective effects against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The extract boasting the highest cannabinoid content exhibited remarkable antioxidant potential and significant inhibitory activity against both enzymes. Further investigation into prebiotic deliveries revealed their proficiency in fostering the growth of beneficial gut bacteria while maintaining antioxidant and neuroprotective functionalities. This study sheds light on the active compounds present in the Białobrzeska variety, showcasing their therapeutic potential within prebiotic systems. Notably, the antioxidant, neuroprotective, and prebiotic properties observed underscore the promising therapeutic applications of these extracts. The results offer valuable insights for potential interventions in antioxidant, neuroprotective, and prebiotic domains. In addition, subsequent analyses of cannabinoid concentrations post-cultivation revealed nuanced changes, emphasising the need for further exploration into the dynamic interactions between cannabinoids and the gut microbiota.