Climate warming, ecological dynamics and nature conservation drive tree diversity in Wigierski National Park, Poland
2025, Robakowski, Piotr, Jagiełło, Radosław, Baranowska, Marlena, Bułaj, Bartosz, Dering, Monika, Hauke-Kowalska, Maria, Korzeniewicz, Robert, Łukowski, Adrian, Szmyt, Janusz Stanisław, Zadworny, Marcin, Wierzbicka, Anna, Popek, Robert, Przybysz, Arkadiusz, Kowalkowski, Wojciech, Uniwersytet Przyrodniczy w Poznaniu
In response to ongoing climate warming, tree species adapted to colder climates are expected to shift their geographic ranges northward. Within the framework of long-term ecological monitoring in Wigry National Park (northeastern Poland), observed changes in forest biocenoses reflect the combined influence of climate change and natural ecological dynamics. This study compares dendroflora composition and diversity between two monitoring periods, 2011 and 2024, as part of an ongoing effort to track climate-related ecological shifts. Tree observations and measurements were carried out using concentric circular plots. In the largest plots, all trees with a diameter at breast height (d.b.h.) ≥ 12 cm were recorded by species, and their d.b.h. was measured. In the smaller plots, all trees with a d.b.h. ≥ 2 cm and < 2 cm but taller than 30 cm were similarly identified and measured. Data were recorded with Field-Map software integrated with an electronic calliper. The species-level taxonomic data, individual counts and basal area per species and plot were used to calculate biodiversity indices. Over the 13-year interval, a marked increase in overall dendroflora diversity was observed. Notably, the dominance of canopy-forming conifers – Pinus sylvestris and, to a lesser extent, Picea abies – measured as the proportion of individuals or stem density, has declined. This decline of coniferous species has been accompanied by an increase in the abundance and diversity of broadleaved deciduous species, including Tilia cordata, Quercus robur, Betula pendula, and Acer platanoides. Other thermophilous deciduous taxa also exhibited upward trends in both presence and abundance. Furthermore, the exponential of Shannon entropy, reached the highest value when evergreen conifers comprised 35% of the stand composition in 2011 and 18% in 2024. This finding suggests that maximum dendroflora diversity reaches its highest level at an intermediate proportion of conifers presence, rather than under conifers dominance or absence. Collectively, the processes occurring in Wigierski National Park illustrate the gradual shift in ecotonal forest ecosystems from cold-adapted coniferous species to broadleaved deciduous taxa due to ongoing climate change.
Shields against pollution: phytoremediation and impact of particulate matter on trees at Wigry National Park, Poland
2025, Popek, Robert, Przybysz, Arkadiusz, Łukowski, Adrian, Baranowska, Marlena, Bułaj, Bartosz, Hauke-Kowalska, Maria, Jagiełło, Radosław, Korzeniewicz, Robert, Moniuszko, Hanna, Robakowski, Piotr, Zadworny, Marcin, Kowalkowski, Wojciech
Root anatomical adaptations of contrasting ectomycorrhizal exploration types in Pinus sylvestris and Quercus petraea across soil horizons
2025, Mucha, Joanna, Zadworny, Marcin, Bułaj, Bartosz, Rutkowski, Paweł, Szuba, Agnieszka, Mąderek, Ewa, Łakomy, Piotr, Trocha, Lidia Katarzyna
Abstract Aims The anatomical characteristics of ectomycorrhizal exploration types in response to soil variability remain insufficiently understood. We examined the root anatomy of contact and long-distance exploration types in Pinus sylvestris and Quercus petraea, species with distinct ecological needs, across different soil horizons. Methods The diameter of ectomycorrhizal roots, the root absorptive traits i.e. proportion of cortex and mantle area, the percentage stele in the diameter, and the weighted average diameter of vessels (Ra) in the ectomycorrhizas were measured within ectomycorrhizas collected from organic and mineral soils across the soil profile. Results The absorptive traits varied along soil horizons, in which water and nutrient availability changed inversely. The proportion of cortex was associated with exploration type, but was not specific to tree species. However, the ectomycorrhizal diameter and the percentage of mantle within the root forming contact exploration type of P. sylvestris showed no variation among soil horizons. In contrast, the soil horizon significantly influenced all root anatomical traits in the contact exploration type of Q. petraea by enhancing the contribution of the absorption area of the root area, mainly in the illuvial horizon, but reaching the smallest value in the organic horizon. The Ra and the cell wall thickness of the vessels were strongly dependent on tree species. With increasing soil depth, Ra in Q. petraea increased, and stele proportion in root diameter decreased. Conclusion The results suggest that water acquisition traits differ among tree species, but traits associated with nutrient absorption (proportion of cortex and mantle area) within specific soil horizons are closely related to the ectomycorrhizal exploration type.
Variability of Functional Groups of Rhizosphere Fungi of Norway Spruce (Picea abies (L.) H.Karst.) in the Boreal Range: The Wigry National Park, Poland
2023, Behnke-Borowczyk, Jolanta, Korzeniewicz, Robert, Łukowski, Adrian, Baranowska, Marlena, Jagiełło, Radosław, Bułaj, Bartosz, Hauke-Kowalska, Maria, Szmyt, Janusz Stanisław, Behnke, Jerzy M., Robakowski, Piotr, Kowalkowski, Wojciech
Rhizosphere microbial communities can influence plant growth and development. Natural regeneration processes take place in the tree stands of protected areas, which makes it possible to observe the natural changes taking place in the rhizosphere along with the development of the plants. This study aimed to determine the diversity (taxonomic and functional) of the rhizosphere fungal communities of Norway spruce growing in one of four developmental stages. Our research was based on the ITS region using Illumina system sequencing. Saprotrophs dominated in the studied rhizospheres, but their percentage share decreased with the age of the development group (for 51.91 from 43.13%). However, in the case of mycorrhizal fungi, an opposite trend was observed (16.96–26.75%). The most numerous genera were: saprotrophic Aspergillus (2.54–3.83%), Penicillium (6.47–12.86%), Pyrenochaeta (1.39–11.78%), pathogenic Curvularia (0.53–4.39%), and mycorrhizal Cortinarius (1.80–5.46%), Pseudotomentella (2.94–5.64%) and Tomentella (4.54–15.94%). The species composition of rhizosphere fungal communities was favorable for the regeneration of natural spruce and the development of multi-generational Norway spruce stands. The ratio of the abundance of saprotrophic and mycorrhizal fungi to the abundance of pathogens was high and promising for the durability of the large proportion of spruce in the Wigry National Park and for forest ecosystems in general.