Convolutional neural network model for the qualitative evaluation of geometric shape of carrot root
2024, Rybacki, Piotr, Sawinska, Zuzanna, Kačániová, Miroslava, Kowalczewski, Przemysław Łukasz, Osuch, Andrzej, Durczak, Karol
The main objective of the study is the development of an automatic carrot root classification model, marked as CR-NET, with the use of a Convolutional Neural Network (CNN). CNN with a constant architecture was built, consistingof an alternating arrangement of five Conv2D, MaxPooling2D and Dropout classes, for which in the Python 3.9 programming language a calculation algorithm was developed. It was found that the classification process of the carrot root images was carried out with an accuracy of 89.06%, meaning that 50 images were misclassified. The highest number of 21 erroneously classified photographs were from the extra class, of which 15 to the first class, thus not resulting in significant loss. However, assuming the number of refuse as the classification basis, the model accuracy greatly increases to 98.69%, as only 6 photographs were erroneously assigned.
Convolutional Neural Network (CNN) Model for the Classification of Varieties of Date Palm Fruits (Phoenix dactylifera L.)
2024, Rybacki, Piotr, Niemann, Janetta, Derouiche, Samir, Chetehouna, Sara, Boulaares, Islam, Seghir, Nili Mohammed, Diatta, Jean, Osuch, Andrzej
The popularity and demand for high-quality date palm fruits (Phoenix dactylifera L.) have been growing, and their quality largely depends on the type of handling, storage, and processing methods. The current methods of geometric evaluation and classification of date palm fruits are characterised by high labour intensity and are usually performed mechanically, which may cause additional damage and reduce the quality and value of the product. Therefore, non-contact methods are being sought based on image analysis, with digital solutions controlling the evaluation and classification processes. The main objective of this paper is to develop an automatic classification model for varieties of date palm fruits using a convolutional neural network (CNN) based on two fundamental criteria, i.e., colour difference and evaluation of geometric parameters of dates. A CNN with a fixed architecture was built, marked as DateNET, consisting of a system of five alternating Conv2D, MaxPooling2D, and Dropout classes. The validation accuracy of the model presented in this study depended on the selection of classification criteria. It was 85.24% for fruit colour-based classification and 87.62% for the geometric parameters only; however, it increased considerably to 93.41% when both the colour and geometry of dates were considered.