Now showing 1 - 4 of 4
No Thumbnail Available
Publication

A multi-year study of ecosystem production and its relation to biophysical factors over a temperate peatland

2023, Poczta, Patryk, Urbaniak, Marek, Sachs, Torsten, Harenda, Kamila, Klarzyńska, Agnieszka, Juszczak, Radosław, Schüttemeyer, Dirk, Czernecki, Bartosz, Kryszak, Anna Krystyna, Chojnicki, Bogdan

No Thumbnail Available
Publication

Vertical Profiles of Aerosol Optical Properties (VIS/NIR) over Wetland Environment: POLIMOS-2018 Field Campaign

2024, Chilinski, Michal T., Markowicz, Krzysztof M., Poczta, Patryk, Chojnicki, Bogdan, Harenda, Kamila, Makuch, Przemysław, Wang, Dongxiang, Stachlewska, Iwona S.

This study aims to present the benefits of unmanned aircraft systems (UAS) in atmospheric aerosol research, specifically to obtain information on the vertical variability of aerosol single-scattering properties in the lower troposphere. The results discussed in this paper were obtained during the Polish Radar and Lidar Mobile Observation System (POLIMOS) field campaign in 2018 at a wetland and rural site located in the Rzecin (Poland). UAS was equipped with miniaturised devices (low-cost aerosol optical counter, aethalometer AE-51, RS41 radiosonde) to measure aerosol properties (scattering and absorption coefficient) and air thermodynamic parameters. Typical UAS vertical profiles were conducted up to approximately 1000 m agl. During nighttime, UAS measurements show a very shallow inversion surface layer up to about 100–200 m agl, with significant enhancement of aerosol scattering and absorption coefficient. In this case, the Pearson correlation coefficient between aerosol single-scattering properties measured by ground-based equipment and UAS devices significantly decreases with altitude. In such conditions, aerosol properties at 200 m agl are independent of the ground-based observation. On the contrary, the ground observations are better correlated with UAS measurements at higher altitudes during daytime and under well-mixed conditions. During long-range transport of biomass burning from fire in North America, the aerosol absorption coefficient increases with altitude, probably due to entrainment of such particles into the PBL.

No Thumbnail Available
Publication

Digital Repeat Photography Application for Flowering Stage Classification of Selected Woody Plants

2025, Różańska, Monika, Harenda, Kamila, Józefczyk, Damian, Wojciechowski, Tomasz, Chojnicki, Bogdan

Digital repeat photography is currently applied mainly in geophysical studies of ecosystems. However, its role as a tool that can be utilized in conventional phenology, tracking a plant’s seasonal developmental cycle, is growing. This study’s main goal was to develop an easy-to-reproduce, single-camera-based novel approach to determine the flowering phases of 12 woody plants of various deciduous species. Field observations served as binary class calibration datasets (flowering and non-flowering stages). All the image RGB parameters, designated for each plant separately, were used as plant features for the models’ parametrization. The training data were subjected to various transformations to achieve the best classifications using the weighted k-nearest neighbors algorithm. The developed models enabled the flowering classifications at the 0, 1, 2, 3, and 5 onset day shift (absolute values) for 2, 3, 3, 2, and 2 plants, respectively. For 9 plants, the presented method enabled the flowering duration estimation, which is a valuable yet rarely used parameter in conventional phenological studies. We found the presented method suitable for various plants, despite their petal color and flower size, until there is a considerable change in the crown color during the flowering stage.

No Thumbnail Available
Publication

Ericoid shrub encroachment shifts aboveground–belowground linkages in three peatlands across Europe and Western Siberia

2023, Buttler, Alexandre, Bragazza, Luca, Laggoun‐Défarge, Fatima, Gogo, Sebastien, Toussaint, Marie‐Laure, Lamentowicz, Mariusz, Chojnicki, Bogdan, Słowiński, Michał, Słowińska, Sandra, Zielińska, Małgorzata, Reczuga, Monika, Barabach, Jan, Marcisz, Katarzyna, Lamentowicz, Łukasz, Harenda, Kamila, Lapshina, Elena, Gilbert, Daniel, Schlaepfer, Rodolphe, Jassey, Vincent E. J.

AbstractIn northern peatlands, reduction of Sphagnum dominance in favour of vascular vegetation is likely to influence biogeochemical processes. Such vegetation changes occur as the water table lowers and temperatures rise. To test which of these factors has a significant influence on peatland vegetation, we conducted a 3‐year manipulative field experiment in Linje mire (northern Poland). We manipulated the peatland water table level (wet, intermediate and dry; on average the depth of the water table was 17.4, 21.2 and 25.3 cm respectively), and we used open‐top chambers (OTCs) to create warmer conditions (on average increase of 1.2°C in OTC plots compared to control plots). Peat drying through water table lowering at this local scale had a larger effect than OTC warming treatment per see on Sphagnum mosses and vascular plants. In particular, ericoid shrubs increased with a lower water table level, while Sphagnum decreased. Microclimatic measurements at the plot scale indicated that both water‐level and temperature, represented by heating degree days (HDDs), can have significant effects on the vegetation. In a large‐scale complementary vegetation gradient survey replicated in three peatlands positioned along a transitional oceanic–continental and temperate–boreal (subarctic) gradient (France–Poland–Western Siberia), an increase in ericoid shrubs was marked by an increase in phenols in peat pore water, resulting from higher phenol concentrations in vascular plant biomass. Our results suggest a shift in functioning from a mineral‐N‐driven to a fungi‐mediated organic‐N nutrient acquisition with shrub encroachment. Both ericoid shrub encroachment and higher mean annual temperature in the three sites triggered greater vascular plant biomass and consequently the dominance of decomposers (especially fungi), which led to a feeding community dominated by nematodes. This contributed to lower enzymatic multifunctionality. Our findings illustrate mechanisms by which plants influence ecosystem responses to climate change, through their effect on microbial trophic interactions.