Chitosan/Perlite System as a Microbial Carrier in Anaerobic Digestion of Food Waste: Characteristics and Impact of the Additive Materials
2024, Pilarska, Agnieszka A., Marzec-Grządziel, Anna, Makowska, Małgorzata, Kolasa-Więcek, Alicja, Jambulingam, Ranjitha, Kałuża, Tomasz, Pilarski, Krzysztof
The article aims to present the results of research on anaerobic digestion (AD) of waste wafers (WF - control) and co-substrate system - waste wafers and cheese (WFC - control), combined with digested sewage sludge. The aim of the study was to evaluate the physicochemical parameters of the chitosan/perlite (Ch/P; 3:1) carrier material and to verify its effect on the directions of change of the bacterial microbiome, removal kinetics of organic matter and AD process efficiency. The experiment was conducted in a laboratory, in a periodical mode of operation of bioreactors, under mesophilic conditions. The results of analyses of morphological-dispersive, spectroscopic, adsorption, thermal and microbiological properties confirmed that the tested carrier material can be an excellent option to implement in biotechnological processes, especially in anaerobic digestion. The microstructural properties of the carrier were influenced by both components: perlite determined the development of the specific surface area, while chitosan shaped the porosity of the system. The thermal properties were determined by the less heat-resistant component, present in a threefold higher weight proportion, i.e. chitosan. The evaluation of quantitative and qualitative changes in the genetic diversity of bacterial communities, carried out using Next Generation Sequencing (NGS), showed that the material has a modifying effect on the bacterial microbiome. Amount of bacteria from phyla Actinobacteria, Bacteroidetes, Campilobacterota, Chloroflexi, Euryarchaeota, Planctomycetes, and Proteobacteria decreased while Firmicutes, Synergistetes, and Thermotogae increased during the course of the experiment. The shapes of the FT-IR spectra indicated a dependence of the degradation rate on both the presence of the carrier and the cosubstrate system. Monitoring of the course of AD was carried out by measuring key parameters for the stability of the process: pH, VFA and VFA/TA ratio (volatile fatty acids/total alkalinity). As a result, an increase in the volume of biogas/methane produced, under the influence of the carrier, was recorded for WF-control by 12.05% and for WFC-control by 19.16%. The volume of methane for the WF-control increased from 351.72 m3 Mg-1 VS to 411.14 m3 Mg-1 VS, while for the cosubstrate sample it increased from 476.84 m3 Mg-1 VS to 518.08 m3 Mg-1 VS, confirming the validity of combining the respective cosubstrate with microbial carrier in anaerobic bioreactor.
Additives Improving the Efficiency of Biogas Production as an Alternative Energy Source—A Review
2024, Pilarska, Agnieszka A., Pilarski, Krzysztof, Kulupa, Tomasz, Kubiak, Adrianna, Wolna-Maruwka, Agnieszka, Niewiadomska, Alicja, Dach, Jacek
Additives for anaerobic digestion (AD) can play a significant role in optimising the process by increasing biogas production, stabilising the system and improving digestate quality. The role of additives largely boils down to: (i) enhancing direct interspecies electron transfer (DIET) between microbial communities, resulting in improved syntrophic interactions and methane production rates (e.g. biochar, magnetite and carbon nanotubes), (ii) adsorption of toxic substances that may inhibit microbial activity (e.g. activated carbon, zeolites), (iii) improving microbial activity and increasing process stability (e.g. cobalt, nickel, iron, selenium), (iv) maintaining optimal pH levels for microbial activity (e.g. magnesium oxide), (v) reducing inhibition (the aforementioned adsorbents and conductive substances), (vi) accelerating the decomposition of complex organic materials into simpler compounds that are more easily digested by microorganisms, thereby increasing the rate of hydrolysis (enzymes, including cellulases, proteases and lipases). Through the aforementioned action, additives can significantly affect AD performance. The function of these materials varies, from enhancing microbial activity to maintaining optimal conditions and protecting the system from inhibitors. The choice of additives should be carefully tailored to the specific needs and conditions of the digester to maximise benefits and ensure sustainability. In light of these considerations, this paper characterizes the most commonly used additives and their combinations based on a comprehensive review of recent scientific publications, including a report on the results of conducted studies. The publication features chapters that describe: carbon-based conductive materials, metal oxide nanomaterials, trace metal and biological additives, including enzymes and microorganisms. It concludes with a chapter summarising reports on various additives and discussing their indications for functional systems with determined properties. A notable advantage of this work is the updated literature data, clear summaries, and a substantive description of the performance of the additives discussed.
Ocena jakościowych i ilościowych zmian mikrobiomu bakteryjnego w procesie beztlenowego rozkładu materii organicznej
2024, Pilarska, Agnieszka, Wolna-Maruwka, Agnieszka, Kubiak, Adrianna, Niewiadomska, Alicja, Hammerling, Mateusz, Pilarski, Krzysztof, Danielewska, Alicja, Kalbarczyk, Kinga
Wiodące aspekty funkcjonowania biogazowni rolniczych
2024, Pilarski, Krzysztof, Pilarska, Agnieszka A., Kiełkowska, Urszula, Machalski, Paweł
Additives Improving the Efficiency of Biogas Production as an Alternative Energy Source - A Review
2024, Pilarska, Agnieszka, Pilarski, Krzysztof, Kulupa, Tomasz, Kubiak, Adrianna, Wolna-Maruwka, Agnieszka, Niewiadomska, Alicja, Dach, Jacek
Additives for anaerobic digestion (AD) can play a significant role in optimizing the process by increasing biogas production, stabilizing the system, and improving digestate quality. The role of additives largely boils down to, among others, enhancing direct interspecies electron transfer (DIET) between microbial communities, resulting in improved syntrophic interactions, adsorption of toxic substances that may inhibit microbial activity, improving microbial activity, and increasing process stability and accelerating the decomposition of complex organic materials, thereby increasing the rate of hydrolysis. Through the aforementioned action, additives can significantly affect AD performance. The function of these materials varies, from enhancing microbial activity to maintaining optimal conditions and protecting the system from inhibitors. The choice of additives should be carefully tailored to the specific needs and conditions of the digester to maximize benefits and ensure sustainability. In light of these considerations, this paper characterizes the most commonly used additives and their combinations based on a comprehensive review of recent scientific publications, including a report on the results of conducted studies. The publication features chapters that describe carbon-based conductive materials, metal oxide nanomaterials, trace metal, and biological additives, including enzymes and microorganisms. It concludes with the chapters summarising reports on various additives and discussing their functional properties, as well as advantages and disadvantages. The presented review is a substantive and concise analysis of the latest knowledge on additives for the AD process. The application of additives in AD is characterized by great potential; hence, the subject matter is very current and future-oriented.