Now showing 1 - 20 of 27
No Thumbnail Available
Publication

Biogazownie w Polsce - stan obecny, wyzwania i perspektywy rozwoju

2025, Pilarski, Krzysztof, Pilarska, Agnieszka

No Thumbnail Available
Publication

The Use of Chitosan/Perlite Material for Microbial Support in Anaerobic Digestion of Food Waste

2025, Pilarska, Agnieszka, Marzec-Grządziel, Anna, Makowska, Małgorzata, Kolasa- Więcek, Alicja, Ranjitha ,Jambulingam, Kałuża, Tomasz, Pilarski, Krzysztof

No Thumbnail Available
Publication

Chitosan/Perlite System as a Microbial Carrier in Anaerobic Digestion of Food Waste: Characteristics and Impact of the Additive Materials

2024, Pilarska, Agnieszka A., Marzec-Grządziel, Anna, Makowska, Małgorzata, Kolasa-Więcek, Alicja, Jambulingam, Ranjitha, Kałuża, Tomasz, Pilarski, Krzysztof

The article aims to present the results of research on anaerobic digestion (AD) of waste wafers (WF - control) and co-substrate system - waste wafers and cheese (WFC - control), combined with digested sewage sludge. The aim of the study was to evaluate the physicochemical parameters of the chitosan/perlite (Ch/P; 3:1) carrier material and to verify its effect on the directions of change of the bacterial microbiome, removal kinetics of organic matter and AD process efficiency. The experiment was conducted in a laboratory, in a periodical mode of operation of bioreactors, under mesophilic conditions. The results of analyses of morphological-dispersive, spectroscopic, adsorption, thermal and microbiological properties confirmed that the tested carrier material can be an excellent option to implement in biotechnological processes, especially in anaerobic digestion. The microstructural properties of the carrier were influenced by both components: perlite determined the development of the specific surface area, while chitosan shaped the porosity of the system. The thermal properties were determined by the less heat-resistant component, present in a threefold higher weight proportion, i.e. chitosan. The evaluation of quantitative and qualitative changes in the genetic diversity of bacterial communities, carried out using Next Generation Sequencing (NGS), showed that the material has a modifying effect on the bacterial microbiome. Amount of bacteria from phyla Actinobacteria, Bacteroidetes, Campilobacterota, Chloroflexi, Euryarchaeota, Planctomycetes, and Proteobacteria decreased while Firmicutes, Synergistetes, and Thermotogae increased during the course of the experiment. The shapes of the FT-IR spectra indicated a dependence of the degradation rate on both the presence of the carrier and the cosubstrate system. Monitoring of the course of AD was carried out by measuring key parameters for the stability of the process: pH, VFA and VFA/TA ratio (volatile fatty acids/total alkalinity). As a result, an increase in the volume of biogas/methane produced, under the influence of the carrier, was recorded for WF-control by 12.05% and for WFC-control by 19.16%. The volume of methane for the WF-control increased from 351.72 m3 Mg-1 VS to 411.14 m3 Mg-1 VS, while for the cosubstrate sample it increased from 476.84 m3 Mg-1 VS to 518.08 m3 Mg-1 VS, confirming the validity of combining the respective cosubstrate with microbial carrier in anaerobic bioreactor.

No Thumbnail Available
Publication

Operation and challenges of biogas technology: a fundamental overview

2024, Pilarski, Krzysztof, Pilarska, Agnieszka

The modern world is facing a huge energy crisis related to the depletion of conventional energy sources. Therefore, obtaining energy from alternative sources is sparking increasing interest, expressed by both scientists and entrepreneurs. One such source is biogas, which has great potential to become, along with wind and solar energy, an important renewable energy source (RES). This paper presents the technical and practical aspects of biogas production (mainly agricultural) and extensively discusses the anaerobic digestion (AD) process. The global development of biogas plants and the operation of the most important types of biogas plants are also discussed. In the conclusion section, the benefits of biogas technology development are provided and explained, as well as the challenges and barriers hindering the intensification of biogas plant construction despite the potential and access to adequate resources and waste materials.

No Thumbnail Available
Patent

Organiczno - mineralny substytut glebowy oraz sposób wytwarzania organiczno - mineralnego substytutu glebowego

2019, KRZYSZTOF ADAM DOBRZAŃSKI, JACEK JAN PRZYBYŁ, EWA MAŁGORZATA TINZ, KRZYSZTOF MACIEJ PILARSKI

No Thumbnail Available
Publication

Fundamentals, Operation and Global Prospects for the Development of Biogas Plants-A Review

2024, Gadirli, Gulnar, Pilarska, Agnieszka, Dach, Jacek, Pilarski, Krzysztof, Kolasa-Więcek, Alicja, Borowiak, Klaudia

As the global demand for renewable energy continues to rise, biogas production has emerged as a promising solution for sustainable energy generation. This review article presents the advantages of biogas technologies (mainly agricultural, based on waste of animal and plant origin) and extensively discusses the main principles of biogas production in the anaerobic digestion (AD). In this respect, the main parameters of the process, which require monitoring and decisive for its efficiency are described, therefore: temperature, pH value, retention time and organic loading rate (OLR). The principles of substrate selection are also discussed and the necessity and advantages of the use of organic waste according to the model of a circular economy and the concept of sustainable development, are indicated. It is emphasized that according to the new European regulations, the crops classified as food cannot be considered energy crops. The part on biogas production is summarised with an explanation of the necessity to treat and purify biogas. Biogas purification is important from the point of view of the efficiency of its conversion into electricity. A special place in this paper is devoted to the design, construction, functioning and operation of biogas plants, based on both scientific and practical aspects. In conclusion of this chapter, the economic aspects and profitability of operating biogas plants are discussed. Cost and benefit analyses are the major tool used for the systematic evaluation of the financial costs and potential benefits associated with the operation of biogas plants. The important fact is that the return on investment can be achieved within a few years, provided the activities are well-planned and executed. In addition to the fundamental issues of the operation of biogas plants, this article presents the global situation regarding the development of biogas plants, discussing in detail the specific needs and limitations on different continents. It is a interesting and extensive part of this article. The global agricultural biogas market is at very different levels of development. Most such installations are located in Asia and Europe. China has the highest number of biogas plants, with more than 100,000 biogas plants, followed by Germany with over 10,000 plants. In addition to the 100,000 biogas plants, China also has a large number of household biogas units, which gives a total of approx. 40 million operating units. The article concludes with a discussion of opportunities and barriers to the development of biogas plants, pointing to: financial issues, access to feedstock, political regulations, public awareness and the geopolitical situation. The most frequently cited reasons for investment failure include economic problems, lack of professional knowledge.

No Thumbnail Available
Publication

Biofilm Formation and Genetic Diversity of Microbial Communities in Anaerobic Batch Reactor with Polylactide (PLA) Addition

2023, Pilarska, Agnieszka, Marzec-Grządziel, Anna, Paluch, Emil, Pilarski, Krzysztof, Wolna-Maruwka, Agnieszka, Kubiak, Adrianna, Kałuża, Tomasz, Kulupa, Tomasz

In this paper, an anaerobic digestion (AD) study was conducted on confectionery waste with granular polylactide (PLA) as a cell carrier. Digested sewage sludge (SS) served as the inoculum and buffering agent of systems. This article shows the results of the analyses of the key experimental properties of PLA, i.e., morphological characteristics of the microstructure, chemical composition and thermal stability of the biopolymer. The evaluation of quantitative and qualitative changes in the genetic diversity of bacterial communities, performed using the state-of-the-art next generation sequencing (NGS) technique, revealed that the material significantly enhanced bacterial proliferation; however, it does not change microbiome biodiversity, as also confirmed via statistical analysis. More intense microbial proliferation (compared to the control sample, without PLA and not digested, CW–control, CW–confectionery waste) may be indicative of the dual role of the biopolymer—support and medium. Actinobacteria (34.87%) were the most abundant cluster in the CW–control, while the most dominant cluster in digested samples was firmicutes: in the sample without the addition of the carrier (CW–dig.) it was 68.27%, and in the sample with the addition of the carrier (CW + PLA) it was only 26.45%, comparable to the control sample (CW–control)—19.45%. Interestingly, the number of proteobacteria decreased in the CW–dig. sample (17.47%), but increased in the CW + PLA sample (39.82%) compared to the CW–control sample (32.70%). The analysis of biofilm formation dynamics using the BioFlux microfluidic system shows a significantly faster growth of the biofilm surface area for the CW + PLA sample. This information was complemented by observations of the morphological characteristics of the microorganisms using fluorescence microscopy. The images of the CW + PLA sample showed carrier sections covered with microbial consortia.

No Thumbnail Available
Publication

Bioenergy Generation from Different Types of Waste by Anaerobic Digestion

2023, Pilarska, Agnieszka, Pilarski, Krzysztof

One of the problems of the modern world is the generation of increasing amounts of waste by agriculture and various industries [...]

No Thumbnail Available
Publication

Anaerobic Digestion of Food Waste—A Short Review

2023, Pilarska, Agnieszka, Kulupa, Tomasz, Kubiak, Adrianna, Wolna-Maruwka, Agnieszka, Pilarski, Krzysztof, Niewiadomska, Alicja

In recent years, growing environmental awareness, the need to reduce greenhouse gas emissions, and the energy crisis have led many countries to seek alternative energy sources. One of the most promising solutions is biogas production via anaerobic digestion (AD), whose substrate can be organic-rich and easily biodegradable food waste (FW). This waste is a significant part of the global waste problem, and its use for energy production is beneficial to both the environment and the economy. This paper presents important issues concerning the monitoring of the AD process, as well as standard and innovative, for the implementation of this process, technological solutions. The aim of the measures taken to optimise the process is to increase AD efficiency and obtain the highest possible methane content in biogas. Two approaches—pretreatment and anaerobic co-digestion (AcoD)—have been integral to the implementation of AD of food waste for years. They are presented in this paper based on a review of recent research developments. Pretreatment methods are discussed with particular emphasis on mechanical, chemical and biological methods. The AcoD of FW with different organic substrates has been extensively reviewed, as confirmed by numerous studies, where higher buffer capacity and optimum nutrient balance enhance the biogas/methane yields. Attention was also paid to the parameters, operating mode and configurations of anaerobic digesters, with a thorough analysis of the advantages and disadvantages of each solution. The article concludes with a brief presentation of the development perspectives for the discussed FW management method and recommendations.

No Thumbnail Available
Publication

Ocena jakościowych i ilościowych zmian mikrobiomu bakteryjnego w procesie beztlenowego rozkładu materii organicznej

2024, Pilarska, Agnieszka, Wolna-Maruwka, Agnieszka, Kubiak, Adrianna, Niewiadomska, Alicja, Hammerling, Mateusz, Pilarski, Krzysztof, Danielewska, Alicja, Kalbarczyk, Kinga

No Thumbnail Available
Publication

End-of-Life Strategies for Wind Turbines: Blade Recycling, Second-Life Applications, and Circular Economy Integration

2025, Cieślewicz, Natalia, Pilarski, Krzysztof, Pilarska, Agnieszka

Wind power is integral to the transformation of energy systems towards sustainability. However, the increasing number of wind turbines approaching the end of their service life presents significant challenges in terms of waste management and environmental sustainability. Rotor blades, typically composed of thermoset polymer composites reinforced with glass or carbon fibres, are particularly problematic due to their low recyclability and complex material structure. The aim of this article is to provide a system-level review of current end-of-life strategies for wind turbine components, with particular emphasis on blade recycling and decision-oriented comparison, and its integration into circular economy frameworks. The paper explores three main pathways: operational life extension through predictive maintenance and design optimisation; upcycling and second-life applications; and advanced recycling techniques, including mechanical, thermal, and chemical methods, and reports qualitative/quantitative indicators together with an indicative Technology Readiness Level (TRL). Recent innovations, such as solvolysis, microwave-assisted pyrolysis, and supercritical fluid treatment, offer promising recovery rates but face technological and economic as well as environmental compliance limitations. In parallel, the review considers deployment maturity and economics, including an indicative mapping of cost and deployment status to support decision-making. Simultaneously, reuse applications in the construction and infrastructure sectors—such as concrete additives or repurposed structural elements—demonstrate viable low-energy alternatives to full material recovery, although regulatory barriers remain. The study also highlights the importance of systemic approaches, including Extended Producer Responsibility (EPR), Digital Product Passports and EU-aligned policy/finance instruments, and cross-sectoral collaboration. These instruments are essential for enhancing material traceability and fostering industrial symbiosis. In conclusion, there is no universal solution for wind turbine blade recycling. Effective integration of circular principles will require tailored strategies, interdisciplinary research, and bankable policy support. Addressing these challenges is crucial for minimising the environmental footprint of the wind energy sector.

No Thumbnail Available
Publication

Biogas Plants: Fundamentals, Operation and Prospects

2023, Gadirli, Gulnar, Pilarska, Agnieszka, Dach, Jacek, Pilarski, Krzysztof, Kolasa-Więcek, Alicja, Borowiak, Klaudia

As the global demand for renewable energy continues to rise, biogas technology has emerged as a promising solution for sustainable energy generation. This review article presents the advantages of biogas technologies and extensively discusses the main principles of biogas production in the methane fermentation process. In this respect, the main parameters of the process, which require monitoring and are at the same time decisive for its course and efficiency are described, the principles of substrate selection are discussed and the necessity and advantages of the use of organic waste according to the model of a circular economy and the concept of sustainable development, are indicated. The part on biogas production is summarised with an explanation of the necessity to treat and purify biogas, taking into account the share of methane extracted. A special place in this paper is devoted to the design, construction, functioning and operation of biogas plants, based on both scientific and practical aspects. In conclusion of this chapter, the economic aspects and profitability of operating biogas plants are discussed, taking into account, in a theoretical balance sheet – in addition to investment and operating costs and the availability and cost of raw materials – the possibilities of producing and using electricity and heat, as well as environmental and social benefits. The article concludes with a discussion of opportunities and barriers to the development of biogas plants, pointing to: financial issues, access to feedstock, political regulations, public awareness and the geopolitical situation as key factors issues related to biogas plants – in different regions of the world.

No Thumbnail Available
Publication

Wiodące aspekty funkcjonowania biogazowni rolniczych

2024, Pilarski, Krzysztof, Pilarska, Agnieszka A., Kiełkowska, Urszula, Machalski, Paweł

No Thumbnail Available
Publication

An Agricultural Biogas Plant as a Thermodynamic System: A Study of Efficiency in the Transformation from Primary to Secondary Energy

2023, Pilarski, Krzysztof, Pilarska, Agnieszka, Kolasa-Więcek, Alicja, Suszanowicz, Dariusz

Using a wide range of organic substrates in the methane fermentation process enables efficient biogas production. Nonetheless, in many cases, the efficiency of electricity generation in biogas plant cogeneration systems is much lower than expected, close to the calorific value of the applied feedstock. This paper analyses the energy conversion efficiency in a 1 MWel agricultural biogas plant fed with corn silage or vegetable waste and pig slurry as a feedstock dilution agent, depending on the season and availability. Biomass conversion studies were carried out for 12 months, during which substrate samples were taken once a month. The total primary energy in the substrates was estimated in laboratory conditions by measuring the released heat (17,760 MWh·year−1), and, in the case of pig slurry, biochemical methane potential (BMP, (201.88 ± 3.21 m3·Mg VS−1). Further, the substrates were analysed in terms of their chemical composition, from protein, sugar and fat content to mineral matter determination, among other things. The results obtained during the study were averaged. Based on such things as the volume of the biogas, the amount of chemical (secondary) energy contained in methane as a product of biomass conversion (10,633 MWh·year−1) was calculated. Considering the results obtained from the analyses, as well as the calculated values of the relevant parameters, the biomass conversion efficiency was determined as the ratio of the chemical energy in methane to the (primary) energy in the substrates, which was 59.87%, as well as the electricity production efficiency, as the ratio of the electricity produced (4913 MWh·year−1) to the primary energy, with a 35% cogeneration system efficiency. The full energy conversion efficiency, related to electricity production, reached a low value of 27.66%. This article provides an insightful, unique analysis of energy conversion in an active biogas plant as an open thermodynamic system.

No Thumbnail Available
Publication

Agricultural Biogas Plant as a Thermodynamic System: A Study of Efficiency in the Transformation from Primary to Secondary Energy

2023, Pilarski, Krzysztof, Pilarska, Agnieszka, Kolasa-Wiecek, Alicja, Suszanowicz, Dariusz

Using a wide range of organic substrates in the methane fermentation process enables efficient biogas production. Nonetheless, in many cases, the efficiency of electricity generation in biogas plant cogeneration systems is much lower than expected, close to the calorific value of the applied feedstock. This paper analyses energy conversion efficiency in a 1 MWel agricultural biogas plant fed with corn silage or vegetable waste and pig slurry as a feedstock dilution agent, depending on the season and availability. Biomass conversion studies were carried out for 12 months, during which substrate samples were taken once a month. The total primary energy in substrates was estimated in laboratory conditions by measuring the heat of combustion in a ballistic bomb calorimeter (17,760 MWh·year-1), and in the case of pig slurry, biochemical methane potential (BMP, (201.88±3.21 m3·Mg VS-1). Further, the substrates were analysed in terms of their chemical composition — from protein, sugar and fat content to mineral matter determination, among other things. The results obtained during the study were averaged. Based on such things as the amount of biogas produced at the plant, the amount of chemical (secondary) energy contained in methane as a product of biomass conversion (10,633 MWh·year-1) was calculated. Considering the results obtained from the analyses, as well as the calculated values of the relevant parameters, biomass conversion efficiency was determined as a ratio of chemical energy in methane to (primary) energy in substrates, which was 59.87%, as well as electricity production efficiency, as a ratio of electricity produced (4,913 MWh·year-1) to primary energy, with a 35% cogeneration system efficiency. Full energy conversion efficiency, related to electricity production, reached a low value of 27.66%. This article provides an insightful, unique analysis of energy conversion in an active biogas plant as an open thermodynamic system.

No Thumbnail Available
Publication

Biogas Production in Agriculture: Technological, Environmental, and Socio-Economic Aspects

2025, Pilarski, Krzysztof, Pilarska, Agnieszka, Pietrzak, Michał B.

This review provides a comprehensive analysis of the technological, environmental, economic, regulatory, and social dimensions shaping the development and operation of agricultural biogas plants. The paper adopts a primarily European perspective, reflecting the comparatively high share of agricultural inputs in anaerobic digestion (AD) across EU Member States, while drawing selective comparisons with global contexts to indicate where socio-geographical conditions may lead to different outcomes. It outlines core principles of the AD process and recent innovations—such as enzyme supplementation, microbial carriers, and multistage digestion systems—that enhance process efficiency and cost-effectiveness. The study emphasises substrate optimisation involving both crop- and livestock-derived materials, together with the critical management of water resources and digestate within a circular-economy framework to promote sustainability and minimise environmental risks. Economic viability, regulatory frameworks, and social dynamics are examined as key factors underpinning successful biogas implementation. The paper synthesises evidence on cost–benefit performance, investment drivers, regulatory challenges, and support mechanisms, alongside the importance of community engagement and participatory governance to mitigate land-use conflicts and ensure equitable rural development. Finally, it addresses persistent technical, institutional, environmental, and social barriers that constrain biogas deployment, underscoring the need for integrated solutions that combine technological advances with policy support and stakeholder cooperation. This analysis offers practical insights for advancing sustainable biogas use in agriculture, balancing energy production with environmental stewardship, food security, and rural equity. The review is based on literature identified in Scopus and Web of Science for 2007 to 2025 using predefined keyword sets and supplemented by EU policy and guidance documents and backward- and forward-citation searches.

No Thumbnail Available
Publication

Nośnik diatomit/torf w intensyfikacji fermentacji metanowej odpadów organicznych: efektywność i stabilność procesu oraz zmiany mikrobiomu

2025, Pilarska, Agnieszka, Wolna-Maruwka, Agnieszka, Pilarski, Krzysztof, Kubiak, Adrianna, Niewiadomska, Alicja, Frankowski, Robert

No Thumbnail Available
Publication

Biogas as renewable energy source: A brief overview

2025, Pilarski, Krzysztof, Pilarska, Agnieszka, Dach, Jacek

No Thumbnail Available
Publication

Efficiency of biomass conversion in combined bioethanol and biogas production

2025, Pilarski, Krzysztof, Pilarska, Agnieszka, Pawlak, Karolina, Rastogi, Anshu, Ravichandran, Minithra, Masilamani, Nandan

No Thumbnail Available
Publication

Additives Improving the Efficiency of Biogas Production as an Alternative Energy Source—A Review

2024, Pilarska, Agnieszka A., Pilarski, Krzysztof, Kulupa, Tomasz, Kubiak, Adrianna, Wolna-Maruwka, Agnieszka, Niewiadomska, Alicja, Dach, Jacek

Additives for anaerobic digestion (AD) can play a significant role in optimising the process by increasing biogas production, stabilising the system and improving digestate quality. The role of additives largely boils down to: (i) enhancing direct interspecies electron transfer (DIET) between microbial communities, resulting in improved syntrophic interactions and methane production rates (e.g. biochar, magnetite and carbon nanotubes), (ii) adsorption of toxic substances that may inhibit microbial activity (e.g. activated carbon, zeolites), (iii) improving microbial activity and increasing process stability (e.g. cobalt, nickel, iron, selenium), (iv) maintaining optimal pH levels for microbial activity (e.g. magnesium oxide), (v) reducing inhibition (the aforementioned adsorbents and conductive substances), (vi) accelerating the decomposition of complex organic materials into simpler compounds that are more easily digested by microorganisms, thereby increasing the rate of hydrolysis (enzymes, including cellulases, proteases and lipases). Through the aforementioned action, additives can significantly affect AD performance. The function of these materials varies, from enhancing microbial activity to maintaining optimal conditions and protecting the system from inhibitors. The choice of additives should be carefully tailored to the specific needs and conditions of the digester to maximise benefits and ensure sustainability. In light of these considerations, this paper characterizes the most commonly used additives and their combinations based on a comprehensive review of recent scientific publications, including a report on the results of conducted studies. The publication features chapters that describe: carbon-based conductive materials, metal oxide nanomaterials, trace metal and biological additives, including enzymes and microorganisms. It concludes with a chapter summarising reports on various additives and discussing their indications for functional systems with determined properties. A notable advantage of this work is the updated literature data, clear summaries, and a substantive description of the performance of the additives discussed.