Now showing 1 - 9 of 9
No Thumbnail Available
Publication

How Climate Change Affects River and Lake Water Temperature in Central-West Poland—A Case Study of the Warta River Catchment

2023, Gizińska, Joanna, Sojka, Mariusz

Climate change has a significant impact on the abiotic and biotic environment. An increase in air temperatures translates into higher temperatures of water constituting the habitat of a wide range of species. The purpose of this study is to present the direction and extent of water temperature increases in eight rivers and three lakes on a monthly and annual basis. The analysis of river water temperatures used both measured data and data reconstructed using artificial neural networks from the period of 1984–2020. The analysis of the direction and extent of changes in air and water temperatures was performed using Mann-Kandall tests and a modified Sen test. The analysis of water temperature changes was conducted against the background of climatic conditions and catchment characteristics. The results indicate that in the Warta River basin in the period of 1984–2020, the average annual temperature rise reached 0.51 °C decade−1, ranging from 0.43 to 0.61 °C decade−1. This translated into an increase in mean annual water temperatures in lakes in a range from 0.14 to 0.58 °C decade−1, and for rivers in a range from 0.10 to 0.54 °C decade−1. The greatest changes in air temperature occurred in April, June, August, September, and November. It was reflected in an increase in water temperature in lakes and rivers. However, these changes did not occur in all rivers and lakes, suggesting the role of local factors that modify the effect of climate change. The study showed that the extent of air temperature changes was significantly higher than the extent of water temperature changes in rivers.

No Thumbnail Available
Publication

Assessment of the Impact of Meteorological Variables on Lake Water Temperature Using the SHapley Additive exPlanations Method

2024, Amnuaylojaroen, Teerachai, Ptak, Mariusz, Sojka, Mariusz

The water temperature of lakes is one of their fundamental characteristics, upon which numerous processes in lake ecosystems depend. Therefore, it is crucial to have detailed knowledge about its changes and the factors driving those changes. In this article, a neural network model was developed to examine the impact of meteorological variables on lake water temperature by integrating daily meteorological data with data on interday variations. Neural networks were selected for their ability to model complex, non-linear relationships between variables, often found in environmental data. Among various architectures, the Artificial Neural Network (ANN) was chosen due to its superior performance, achieving an R2 of 0.999, MSE of 0.0352, and MAE of 0.1511 in validation tests. These results significantly outperformed other models such as Multi-Layer Perceptrons (MLPs), Recurrent Neural Networks (RNNs), and Long Short-Term Memory (LSTM). Two lakes (Lake Mikołajskie and Sławskie) differing in morphometric parameters and located in different physico-geographical regions of Poland were analyzed. Performance metrics for both lakes show that the model is capable of providing accurate water temperature forecasts, effectively capturing the primary patterns in the data, and generalizing well to new datasets. Key variables in both cases turned out to be air temperature, while the response to wind and cloud cover exhibited diverse characteristics, which is a result of the morphometric features and locations of the measurement sites.

No Thumbnail Available
Publication

Seven Decades of Surface Temperature Changes in Central European Lakes: What Is Next?

2024, Ptak, Mariusz, Amnuaylojaroen, Teerachai, Sojka, Mariusz

Lakes are vital components of the hydrosphere, holding both environmental and economic significance. In recent times, they have undergone transformations in one of their key characteristics—water temperature. Assessing the scale and pace of these changes depends on the length and accuracy of the available data. This study focuses on the two lakes in Poland (Białe Augustowskie and Studzieniczne) with the longest continuous water temperature records, ranging from 1954 to 2023. The results reveal a relatively stable thermal regime until the late 1980s (with changes that were statistically insignificant) and a significant shift over the past three decades, during which the water temperature increased at a rate of 0.5 °C per decade. Importantly, simulations indicate further warming of the water by the end of the 21st century. Depending on the chosen climate change scenario, the warming of both lakes is expected to continue, with the Shared Socioeconomic Pathways (SSP585) scenario projecting a steady increase of 0.5 °C per decade. Given the fundamental importance of water temperature in determining factors such as water quality, these future changes present a significant challenge for water management authorities in terms of maintaining and managing these ecosystems.

No Thumbnail Available
Publication

Utilizing Multi-Source Datasets for the Reconstruction and Prediction of Water Temperature in Lake Miedwie (Poland)

2024, Ptak, Mariusz, Zhu, Senlin, Amnuaylojaroen, Teerachai, Li, Huan, Szyga-Pluta, Katarzyna, Jiang, Sun, Wang, Li, Sojka, Mariusz

Water temperature is a fundamental parameter of aquatic ecosystems. It directly influences most processes occurring within them. Hence, knowledge of this parameter’s behavior, based on long-term (reliable) observations, is crucial. Gaps in these observations can be filled using contemporary methodological solutions. Difficulties in reconstructing water temperature arise from the selection of an appropriate methodology, and overcoming them involves the proper selection of input data and choosing the optimal modeling approach. This study employed the air2water model and Landsat satellite imagery to reconstruct the water temperature of Lake Miedwie (the fifth largest in Poland), for which field observations conducted by the Institute of Meteorology and Water Management—National Research Institute ended in the late 1980s. The approach based on satellite images in this case yielded less accurate results than model analyses. However, it is important to emphasize the advantage of satellite images over point measurements in the spatial interpretation of lake thermal conditions. In the studied case, due to the lake’s shape, the surface water layer showed no significant thermal contrasts. Based on the model data, long-term changes in water temperature were determined, which historically (1972–2023) amounted to 0.20 °C per decade. According to the adopted climate change scenarios by the end of the 21st century (SSP245 and SSP585), the average annual water temperature will be higher by 1.8 °C and 3.2 °C, respectively. It should be emphasized that the current and simulated changes are unfavorable, especially considering the impact of temperature on water quality. From an economic perspective, Lake Miedwie serves as a reservoir of drinking water, and changes in the thermal regime should be considered in the management of this ecosystem.

No Thumbnail Available
Publication

River water temperature prediction using hybrid machine learning coupled signal decomposition: EWT versus MODWT

2023, Heddam, Salim, Merabet, Khaled, Difi, Salah, Kim, Sungwon, Ptak, Mariusz, Sojka, Mariusz, Zounemat-Kermani, Mohammad, Kisi, Ozgur

No Thumbnail Available
Publication

Historical and Future Changes in Water Temperature in the Pilica River (Central Europe) in Response to Global Warming

2024, Ptak, Mariusz, Amnuaylojaroen, Teerachai, Sojka, Mariusz

This study analyzes changes in the water temperature in the Pilica River (Poland), encompassing both historical data (1958–2023) and projections extending to the year 2100. We use multi-model ensembles (MMEs) with Bayesian Model Averaging (BMA) to integrate various Global Climate Model (GCM) datasets for current and projected climate data. Additionally, a Random Forest (RF) machine learning method is applied to project future water temperatures in the Pilica River. It has been demonstrated that over a period of more than sixty years, the average annual water temperature has increased by nearly 2 °C. Further changes are expected to continue in a similar direction with a gradual rise in this parameter, reaching a temperature increase of 3 °C by the end of the 21st century (SSP585). In the distant future, with average monthly water temperature changes at the Przedbórz station ranging from 0.27 °C to 0.87 °C·decade−1 and at the Białobrzegi station from 0.22 °C to 1.06 °C·decade−1. The results of these changes are concerning, especially considering the crucial role of water temperature in shaping seasonality and the dynamics of processes occurring within the river. In the context of the sustainability of the river itself, but also of the entire catchment area, strategies developed by relevant public administration bodies are needed to mitigate the impacts of global warming observed in the thermal regime of the Pilica River.

No Thumbnail Available
Publication

Long-Term Changes in the Thermal and Ice Regime of the Biebrza River (Northeastern Poland) in the Era of Global Warming

2024, Ptak, Mariusz, Heddam, Salim, Haddout, Soufiane, Sojka, Mariusz, Amnuaylojaroen, Teerachai

In the context of ongoing environmental changes, particularly against the backdrop of global warming, significant attention is being given to areas of exceptional natural value that, in many aspects, retain a pristine character. One such area is the Biebrza River in northeastern Poland, which, together with the wetlands in its basin, forms one of the most valuable ecosystems of its kind in Europe. This study analyses the changes in the thermal and ice regime for two hydrological stations, Sztabin and Burzyn, in the period from 1959 to 2023. It was found that the average annual water temperature in this period for the Biebrza River increased by 0.28 °C/decade, and in the case of ice phenomena, statistically significant changes for both stations showed a decline, with an acceleration of the ice cover disappearance by an average of 3 days/decade. These recorded changes should be considered unfavourable, as they will affect the transformation of both the biotic and abiotic characteristics of the river itself, as well as the natural elements associated with it.

No Thumbnail Available
Publication

How Useful Are Moderate Resolution Imaging Spectroradiometer Observations for Inland Water Temperature Monitoring and Warming Trend Assessment in Temperate Lakes in Poland?

2024, Sojka, Mariusz, Ptak, Mariusz, Szyga-Pluta, Katarzyna, Zhu, Senlin

Continuous software development and widespread access to satellite imagery allow for obtaining increasingly accurate data on the natural environment. They play an important role in hydrosphere research, and one of the most frequently addressed issues in the era of climate change is the thermal dynamics of its components. Interesting research opportunities in this area are provided by the utilization of data obtained from the moderate resolution imaging spectroradiometer (MODIS). These data have been collected for over two decades and have already been used to study water temperature in lakes. In the case of Poland, there is a long history of studying the thermal regime of lakes based on in situ observations, but so far, MODIS data have not been used in these studies. In this study, the available products, such as 1-day and 8-day MODIS land surface temperature (LST), were validated. The obtained data were compared with in situ measurements, and the reliability of using these data to estimate long-term thermal changes in lake waters was also assessed. The analysis was conducted based on the example of two coastal lakes located in Poland. The results of 1-day LST MODIS generally showed a good fit compared to in situ measurements (average RMSE 1.9 °C). However, the analysis of long-term trends of water temperature changes revealed diverse results compared to such an approach based on field measurements. This situation is a result of the limited number of satellite data, which is dictated by environmental factors associated with high cloud cover reaching 60% during the analysis period.

No Thumbnail Available
Publication

Rivers increasingly warmer: Prediction of changes in the thermal regime of rivers in Poland

2025, Ptak, Mariusz, Amnuaylojaroen, Teerachai, Sojka, Mariusz