Szanowni Państwo, w związku z bardzo dużą ilością zgłoszeń, rejestracją danych w dwóch systemach bibliograficznych, a jednocześnie zmniejszonym zespołem redakcyjnym proces rejestracji i redakcji opisów publikacji jest wydłużony. Bardzo przepraszamy za wszelkie niedogodności i dziękujemy za Państwa wyrozumiałość.
Repository logoRepository logoRepository logoRepository logo
Repository logoRepository logoRepository logoRepository logo
  • Communities & Collections
  • Research Outputs
  • Employees
  • AAAHigh contrastHigh contrast
    EN PL
    • Log In
      Have you forgotten your password?
AAAHigh contrastHigh contrast
EN PL
  • Log In
    Have you forgotten your password?
  1. Home
  2. Bibliografia UPP
  3. Bibliografia UPP
  4. Assessment of the Impact of Meteorological Variables on Lake Water Temperature Using the SHapley Additive exPlanations Method
 
Full item page
Options

Assessment of the Impact of Meteorological Variables on Lake Water Temperature Using the SHapley Additive exPlanations Method

Type
Journal article
Language
English
Date issued
2024
Author
Amnuaylojaroen, Teerachai
Ptak, Mariusz
Sojka, Mariusz 
Faculty
Wydział Inżynierii Środowiska i Inżynierii Mechanicznej
PBN discipline
environmental engineering, mining and energy
Journal
Water (Switzerland)
ISSN
2073-4441
DOI
10.3390/w16223296
Web address
https://www.mdpi.com/2073-4441/16/22/3296
Volume
16
Number
22
Pages from-to
art. 3296
Abstract (EN)
The water temperature of lakes is one of their fundamental characteristics, upon which numerous processes in lake ecosystems depend. Therefore, it is crucial to have detailed knowledge about its changes and the factors driving those changes. In this article, a neural network model was developed to examine the impact of meteorological variables on lake water temperature by integrating daily meteorological data with data on interday variations. Neural networks were selected for their ability to model complex, non-linear relationships between variables, often found in environmental data. Among various architectures, the Artificial Neural Network (ANN) was chosen due to its superior performance, achieving an R2 of 0.999, MSE of 0.0352, and MAE of 0.1511 in validation tests. These results significantly outperformed other models such as Multi-Layer Perceptrons (MLPs), Recurrent Neural Networks (RNNs), and Long Short-Term Memory (LSTM). Two lakes (Lake Mikołajskie and Sławskie) differing in morphometric parameters and located in different physico-geographical regions of Poland were analyzed. Performance metrics for both lakes show that the model is capable of providing accurate water temperature forecasts, effectively capturing the primary patterns in the data, and generalizing well to new datasets. Key variables in both cases turned out to be air temperature, while the response to wind and cloud cover exhibited diverse characteristics, which is a result of the morphometric features and locations of the measurement sites.
Keywords (EN)
  • neural network

  • air temperature

  • wind

  • water temperature

  • SHAP

License
cc-bycc-by CC-BY - Attribution
Open access date
November 17, 2024
Fundusze Europejskie
  • About repository
  • Contact
  • Privacy policy
  • Cookies

Copyright 2025 Uniwersytet Przyrodniczy w Poznaniu

DSpace Software provided by PCG Academia