Now showing 1 - 6 of 6
No Thumbnail Available
Publication

Optimizing Soybean Productivity: A Comparative Analysis of Tillage and Sowing Methods and Their Effects on Yield and Quality

2025, Faligowska, Agnieszka, Panasiewicz, Katarzyna, Szymańska, Grażyna, Ratajczak, Karolina

No Thumbnail Available
Publication

Sustainable Methods of Soybean Cultivation in Poland

2024, Panasiewicz, Katarzyna, Faligowska, Agnieszka, Szymańska, Grażyna, Ratajczak, Karolina, Kłosowicz, Monika, Wolna-Maruwka, Agnieszka

Many countries in Europe are struggling with a shortage of feed protein; moreover, efforts are being made to limit the import of post-extraction soybean meal, most often from GMO crops. To achieve the above assumptions, varietal progress is necessary and, above all, breeding work should aim at greater adaptation to regional conditions. This study was designed to evaluate the potential for growing Ukrainian soybean ‘Annushka’ in the southeastern Baltic Sea area, in accordance with the application of mineral nitrogen fertilizer and the inoculation of seeds with Bradyrhizobium japonicum. Soybean ‘Annushka’ yielded 0.98–1.68 t ha−1 in the conditions of central Poland. Our experiments have shown significant variations in seed, protein, and fat yields over the years. The maximum amounts of these characteristics were recorded in 2017. Nitrogen fertilization combined with seed inoculation with B. japonicum has proven to be an important factor in improving soybean yields; however, it slightly modified the content of organic compounds in seeds. Improvement in seed and protein yields relative to the control amounted, respectively, to Nitragina + 30 kg N ha−1 (58.8%; 72.6%), HiStick® Soy + 30 kg N ha−1 (57.6%; 68.3%), and Nitroflora + 60 kg N ha−1 (57.6%; 71.9%).

No Thumbnail Available
Publication

Changes in the Content of Dietary Fiber, Flavonoids, and Phenolic Acids in the Morphological Parts of Fagopyrum tataricum (L.) Gaertn Under Drought Stress

2025, Dziedzic, Krzysztof, Ariyarathna, Pathumi, Szwengiel, Artur, Hęś, Marzanna, Ratajczak, Karolina, Górecka, Danuta, Sulewska, Hanna, Walkowiak, Jarosław

Background: Tartary buckwheat is a plant recognized for its resistance to various environmental stresses. Due to its valuable source of phenolic compounds, Fagopyrum tataricum is also characterized as a medicinal plant; therefore, the aim of this study was to investigate the drought stress for the levels of phenolic compounds in the morphological parts of the plant. Methods: This experiment was conducted in 7 L pots under laboratory conditions. Phenolic compounds were identified using a UHPLC–MS chromatography system. Antioxidant activity was assessed using well-known methods, including the DPPH scavenging activity and ferrous ion chelating activity. Results: In Tartary buckwheat leaves, stems, seeds, and husks, 57 phenolic compounds were identified, with a predominance of quercetin 3-rutinoside, quercetin, kaempferol-3-rutinoside, kaempferol, and derivatives of coumaric acid. It was observed that the Tartary buckwheat samples subjected to drought stress exhibited a slight decrease in the majority of individual phenolic compounds. Conclusions: The measurement of biological parameters indicated that plant regeneration after drought stress demonstrated a rapid recovery, which can be a positive response to the progression of climate changes.

No Thumbnail Available
Publication

Quantitative Determination of Nitrogen Fixed by Soybean and Its Uptake by Winter Wheat as Aftercrops Within Sustainable Agricultural Systems

2024, Ratajczak, Karolina, Becher, Marcin, Kalembasa, Stanisław, Faligowska, Agnieszka, Kalembasa, Dorota, Symanowicz, Barbara, Panasiewicz, Katarzyna, Szymańska, Grażyna, Sulewska, Hanna

The future of agricultural production involves sustainable production systems with a balance between nutrients in soil–plant systems. These production systems are based on limiting the use of mineral fertilizers while introducing natural sources that increase soil fertility. The best example of such a system is plant rotation, including legumes as a forecrop for cereal plants. For this reason, the goal of the present study was to determine the possibility of obtaining nitrogen from the air using 15N isotopes and to determine the quantity of nitrogen biologically fixed and taken up by winter wheat cultivated as a succeeding plant. In field experiments, we investigated the cycle of nitrogen fixed by legume plants in rotation under sustainable conditions, as follows: soybean–winter wheat–winter wheat. After soybean seedling emergence, a mineral fertilizer (15NH4)2SO4 containing 20.1 at% 15N (a dose of 30 kg∙ha−1) was applied, with summer wheat as a reference plant. The yield of soybean reached 2.48 t∙ha−1 for seeds and 8.73 t∙ha−1 for crop residue (CR), providing a total yield of 11.21 t∙ha−1. The total biomass of soybean contained 149.1 kg∙ha−1 of total nitrogen, with 108.1 kg∙ha−1 in the seeds and 41.0 kg∙ha−1 in the residue, of which 34.0 kg∙ha−1 in the seeds and 11.4 kg∙ha−1 in the residue was biologically fixed. CR was ploughed into the soil. Plots with winter wheat cultivated after soybean (2017) were divided into two sub-plots for the application of 0 and 100 kg∙ha−1 of mineral N. The scheme was repeated in 2018. Overall, winter wheat cultivated for two subsequent years took up 8.12 kg∙ha−1 of the total nitrogen from the CR from the control sub-plot and 15.51 kg∙ha−1 from the fertilized sub-plot, of which 2.61 and 2.98 kg∙ha−1 was biologically fixed by soybean plants, respectively. The dose of fertilizer contained 5.920 kg∙ha−1 of 15N, of which 3.024 kg∙ha−1 was accumulated in soybean. In wheat cultivated as the first subsequent crop, the accumulation of 15N was as follows: 0 kg N (control)—0.088 kg∙ha−1; 100 kg N—0.158 kg∙ha−1. Meanwhile, in winter wheat cultivated as the second aftercrop, 0.052 and 0.163 kg∙ha−1 of 15N was accumulated, respectively. This study demonstrates that biological nitrogen fixation in soybeans is an underappreciated solution for enhancing crop productivity within sustainable agricultural systems. It holds significant implications for planning rational fertilizer management, reducing the application of chemical fertilizers, and improving nitrogen use efficiency within crop rotation systems.

No Thumbnail Available
Publication

Assessment of the Impact of Magnesium and Nitrogen Fertilization on Two Species of Grasses Used as Horse Feed

2024, Sulewska, Hanna, Ratajczak, Karolina, Roszkiewicz, Roman

The aim of this study was to determine the effect of nitrogen (three doses of N) and magnesium (two doses of Mg) fertilization on the yield and quality of fodder obtained from two old and extensive grass species Festulolium braunii cv. ‘Felopa’ and Lolium multiflorum cv. ‘Tur’ in field cultivation under dry conditions. F. braunii was better adapted to cultivation on light, dry soils than L. multiflorum; in such conditions, it produces higher yields of dry matter and protein, characterized by a higher concentration of nutrients. F. braunii fertilized with doses of 120 and 180 kg N∙ha−1 yielded higher than that fertilized with a dose of 60 kg N∙ha−1, and L. multiflorum produced similar yields after applying doses of 60, 120 and 180 kg N∙ha−1. For tested grass pasture, a single N application after the start of vegetation in two forms (fast- and slow-acting) appears to be adequate. Resignation from splitting the nitrogen dose due to variable rainfall distribution that can occur after the first cut during the dry summer is beneficial due to a reduction in the losses of nutrients and environmental burdens.

No Thumbnail Available
Publication

Effects of Seed Fraction on Sowing Quality and Yield of Three-Line Hybrid Maize

2025-04-29, Panasiewicz, Katarzyna, Sobieszczański, Rafał, Ratajczak, Karolina, Faligowska, Agnieszka, Szymańska, Grażyna, Bocianowski, Jan, Kolanoś, Anna, Pretkowski, Rafał

Maize is one of the most productive cereal crops, and is increasingly being grown over large areas. Using the right cultivar of high-quality selected seeds for sowing can be crucial for its productivity. The aim of this study was to investigate the effect of kernel fraction on the seed quality, seed vigor, morphological traits, and seed yield of the trilinear hybrid maize cv. ‘Lokata’. The research factor was the kernel fraction, categorized based on the thousand-kernel weight (TKW) into four groups: I—small; II—medium; III–large; and IV–very large. A three-year experiment showed that increases in the TKW resulted in increases in germination and vigor up to fraction III (large seeds) in maize. Sowing maize seeds with a higher TKW resulted in plants with higher fresh and dry weights in the early stages of maize development; however, this response decreased as growth progressed. The seed yield was significantly correlated with plant height and the number of kernels per cob for all fractions sown, but the fraction did not significantly modify the seed yield of ‘Lokata’ maize.